Math, asked by BhardwajAdarsh, 1 month ago

help help help help help

Attachments:

Answers

Answered by mathdude500
3

\large\underline{\sf{Given \:Question - }}

 \sf \: A =\bigg[ \begin{matrix}3&1 \\ 1&2 \end{matrix} \bigg], \: B =  \bigg[ \begin{matrix} - 1&2 \\ 1&4 \end{matrix} \bigg], \: C = \bigg[ \begin{matrix} 2&3 \\ 1&1 \end{matrix} \bigg], \: then \:

find matrix D such that AB = CD

\large\underline{\sf{Solution-}}

Given that,

\rm :\longmapsto\:A = \bigg[ \begin{matrix}3&1 \\ 1&2 \end{matrix} \bigg]

\rm :\longmapsto\:B = \bigg[ \begin{matrix} - 1&2 \\ 1&4 \end{matrix} \bigg]

\rm :\longmapsto\:C = \bigg[ \begin{matrix} 2&3 \\ 1&1 \end{matrix} \bigg]

Let assume that,

\rm :\longmapsto\:D = \bigg[ \begin{matrix} a&b \\ c&d \end{matrix} \bigg]

Now, given that,

\rm :\longmapsto\:AB = CD

So, on substituting the values of matrices, we get

\rm :\longmapsto\:\bigg[ \begin{matrix}3&1 \\ 1&2 \end{matrix} \bigg]\bigg[ \begin{matrix} - 1&2 \\ 1&4 \end{matrix} \bigg] = \bigg[ \begin{matrix} 2&3 \\ 1&1 \end{matrix} \bigg]\bigg[ \begin{matrix} a&b \\ c&d \end{matrix} \bigg]

\rm :\longmapsto\:\bigg[ \begin{matrix}  - 3 + 1&6 + 4 \\  - 1 + 2&2 + 8 \end{matrix} \bigg] = \bigg[ \begin{matrix} 2a + 3c&2b + 3d \\ a + c&b + d \end{matrix} \bigg]

\rm :\longmapsto\:\bigg[ \begin{matrix}  - 2&10\\  1&10 \end{matrix} \bigg] = \bigg[ \begin{matrix} 2a + 3c&2b + 3d \\ a + c&b + d \end{matrix} \bigg]

So, on comparing, we get

\rm :\longmapsto\:2a + 3c =  - 2

and

\rm :\longmapsto\:a + c =  1\bf\implies \:2a + 2c = 2

On Subtracting these equations, we get

\bf :\longmapsto\:c =  -  \: 4

\bf\implies \:a = 5

Also,

\rm :\longmapsto\:2b + 3d =  10

and

\rm :\longmapsto\:b + d =  10\bf\implies \:2b + 2d = 20

On Subtracting these 2 equations, we get

\bf :\longmapsto\:d =  -  \: 10

\bf :\longmapsto\:b =   \: 20

Hence,

\bf\implies \:D = \bigg[ \begin{matrix} a&b \\ c&d \end{matrix} \bigg] = \bigg[ \begin{matrix} 5&20 \\ - 4& - 10 \end{matrix} \bigg]

Similar questions