Math, asked by vishwajeetsingh47, 8 months ago

help help help help help help help help help help help help help help help help help help​

Attachments:

Answers

Answered by rocky200216
9

\large\tt\underbrace{\red{SOLUTION:-}}

GIVEN :-

  • \rm{7\:\cot\theta\:=\:24\:}

\rm{\implies\:\cot\theta\:=\:\dfrac{24}{7}\:}

\checkmark\:\bf{\green{\boxed{\cosec^2\theta\:-\:\cot^2\theta\:=\:1\:}}}

\rm{\implies\:\cosec\theta\:=\:\sqrt{(1\:+\:\cot^2\theta)}\:}

\rm{\implies\:\cosec\theta\:=\:\sqrt{1\:+\:(\dfrac{24}{7})^2}\:}

\rm{\implies\:\cosec\theta\:=\:\sqrt{\dfrac{625}{49}}\:}

\rm{\boxed{\implies\:\cosec\theta\:=\:\dfrac{25}{7}\:}}

__________________________

CALCULATION :-

\rm{\dfrac{1\:-\:\cos\theta}{1\:+\:\cos\theta}\:}

\large\rm{=\:\dfrac{\dfrac{1\:-\:\cos\theta}{\sin\theta}}{\dfrac{1\:+\:\cos\theta}{\sin\theta}}\:}

\large\rm{=\:{\dfrac{{\dfrac{1}{\sin\theta}}\:-\:{\dfrac{\cos\theta}{\sin\theta}}}{{\dfrac{1}{\sin\theta}}\:+\:{\dfrac{\cos\theta}{\sin\theta}}}}\:}

\large\rm{=\:\dfrac{\cosec\theta\:-\:\cot\theta}{\cosec\theta\:+\:\cot\theta}\:}

\large\rm{=\:\dfrac{{\dfrac{25}{7}}\:-\:{\dfrac{24}{7}}}{{\dfrac{25}{7}}\:+\:{\dfrac{24}{7}}}\:}

\large\rm{=\:\dfrac{\dfrac{1}{7}}{\dfrac{49}{7}}\:}

\large\rm{=\:\dfrac{1}{49}\:}

Answered by lubna165
2

Answer:

1/49

Step-by-step explanation:

see the attachment for the solution

Attachments:
Similar questions