Math, asked by hupll, 11 months ago

Help Help
If
 \cos ^{ - 1} x  +  \cos { - 1} y +  { \cos}^{ - 1} z = \pi
then that
 {x}^{2}  +  {y}^{2}  +  {z}^{2}  + 2xy = 1

Answers

Answered by BrainlyPikchu
5

\mathfrak{\huge{\underline{\underline{Answer:-}}}}

 { \cos }^{ - 1} x = a

 { \cos}^{ - 1} y = b

 { \cos}^{ - 1} z = c

= A + B + C = π

= cosAcosB - sinAsinB = -cosC

y + z =  \sqrt{1 -  {x}^{2} }  \sqrt{1 -  {y}^{2} }

 {x}^{2}  +  {y}^{2}  +  {z}^{2}  + 2xyz = 1 -  {x}^{2}  -  {y}^{2}  +   {x}^{2}   {y}^{2}

 =  >  {x}^{2}  +  {y}^{2}  +  {z}^{2}  + 2xyz = 1

Similar questions