Math, asked by toiyamemon133, 11 months ago

help I will mark the brainliset pls ​

Attachments:

Answers

Answered by vidsss
1

Answer:

So=35.Hence RHS=LHS.

I have proved.

check and tell mee

Attachments:
Answered by TRISHNADEVI
6

 \huge{ \underline{ \overline{ \mid{ \mathfrak{ \purple{ \:   \: SOLUTION \:  \: } \mid}}}}}

 \underline{ \mathfrak {\:  \: Given, \:  \: }} \\  \\   \:  \:  \:  \:  \:  \:  \:  \:  \: \mathtt{x =  \frac{ \sqrt{2}  + 1}{ \sqrt{2}  - 1} } \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \mathtt{y =  \frac{ \sqrt{2}  - 1}{ \sqrt{2} + 1 } } \\  \\  \\  \underline{ \mathfrak{ \:  \: To  \:  \: find :  \mapsto \: }}  \\  \\ \:  \:  \:  \:  \:  \:  \:  \:  \mathtt{The \:  \: value \:  \: of \:  \:   \:  \: \red{x {}^{2} + y {}^{2} }  }

 \underline{ \mathfrak{ \:  \: We \:  \:  know \:  \:  that, \: }} \\  \\  \:  \:  \:  \:  \:  \:  \:   \: \mathtt{ (x + y) {}^{2}  = x {}^{2}  +2xy +  y {}^{2} } \\  \\  \mathtt{ :   \rightsquigarrow :  \:(x + y) {}^{2}   - 2xy = x {}^{2}   +  \cancel{2xy} + y {}^{2}  -  \cancel{2xy}} \\  \\  \mathtt{ :   \rightsquigarrow :  \:(x + y) {}^{2}   - 2xy = x {}^{2}  + y {}^{2} } \\  \\ \mathtt{ :   \rightsquigarrow : \:  \underline{ \:  \: x {}^{2}  + y {}^{2}  = (x + y) {}^{2}  - 2xy \:  \: }}

 \underline{ \mathfrak{ \:  \: Now, \:  \: }} \\  \\  \:  \:  \:  \:  \:  \:  \mathtt{x + y =  \frac{ \sqrt{2}  + 1}{ \sqrt{2} - 1 }  +  \frac{ \sqrt{2} - 1 }{ \sqrt{2} + 1 }}  \\  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \mathtt{ =  \frac{( \sqrt{2}  + 1) {}^{2} + ( \sqrt{2}  - 1) {}^{2}  }{( \sqrt{2}   - 1)( \sqrt{2} + 1) }}  \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \: \mathtt{=  \frac{(2 + 2 \sqrt{2}  + 1) + (2 - 2 \sqrt{2} + 1) }{( \sqrt{2} ){}^{2} - (1) {}^{2}   } } \\  \\\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \mathtt {=  \frac{2 + 2 \sqrt{2} + 1 + 2 - 2 \sqrt{2}  + 1 }{2 - 1} } \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \: \mathtt{ =  \frac{6}{1} } \\  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \: \mathtt{= 6} \\  \\ \:  \:  \:  \:  \:   \mathtt{ \therefore \:   \underline{ \:  \: ( x + y) {}^{2}  = (6) {}^{2}  = 36 \:  \:  }  }

 \underline{ \mathfrak{ \:  \: Again, \:  \: }} \\  \\  \mathtt{xy =  \frac{ \sqrt{2}  + 1}{ \sqrt{2} - 1 } \times  \frac{ \sqrt{2}  - 1}{ \sqrt{2}  + 1}  } \\  \\  \:  \:  \:  \:  \:  \:  \mathtt {= 1} \\  \\  \mathtt{ \therefore \:  \:  \underline{ \:  \: 2xy = 2 \times 1 = 2 \:  \: }}

 \mathtt{ \therefore \:  \: x {}^{2}  + y {}^{2}  = (x + y) {}^{2}  -2 xy} \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \mathtt{ =36 - 2 } \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \mathtt{ = 34}

 \huge{ \underline{ \overline{ \mid{ \mathfrak{ \purple{ \:   \: ANSWER \:  \: } \mid}}}}}

 \mathtt{ \:  \:  \star \:  \: If \:  \:  \red{x =  \frac{ \sqrt{2}  + 1}{ \sqrt{2}  - 1}}  \:   \: \:and \:   \: \:  \red{ y =  \frac{ \sqrt{2}  - 1}{ \sqrt{2} + 1 }}  \:  ,\: then \:  \: the \:  \:} \\  \\  \mathtt{value \:  \: of \:  \: \:  \:  \:  \underline{ \red { \:  \: x {}^{2}  + y {}^{2}  = 34 \:  \: }}.}

Similar questions