Math, asked by vijvalsingh1908, 30 days ago

help immediatly its a 9th class ques

Attachments:

Answers

Answered by VεnusVεronίcα
6

\qquad_______________

 \\

\bf{Simplify~:~ \dfrac{x^{a+b}.~x^{b+c}.~x^{c+a}}{(x^a.~x^b.~x^c)}}

 \:

\bf {Using ~the~ law: ~x^m÷x^n=x^{m-n}~ for ~ x^{a+b}÷x^a~and~ so~on:}

\\

 \sf \qquad \dashrightarrow \:  {  {x}^{(a + b) - a}  .  \: {x}^{(b + c) - b} .  \: {x}^{(c + a) - c} }

 \:

 \sf \qquad \dashrightarrow \:  { {x}^{(a - a + b)} .  \:  {x}^{(b - b + c)} . \: {x}^{(c - c + a)}   }

 \:

 \sf \qquad \dashrightarrow \:  {x}^{b} . \:  {x}^{c} . \:  {x}^{a}

 \:

\boxed{\bf{\therefore~The~ value~ of~\dfrac{x^{a+b}.~ x^{b+c}.~x^{c+a}}{x^a.~ x^b.~ x^c}~ is ~ x^b.~ x^c.~ x^a.}}

 \\

\qquad_______________

 \\

\bf{ Some~ important~ laws~ of~ exponents:}

 \:

 \sf \qquad \dashrightarrow \:  {a}^{m} . \:  {a}^{n}  =  {a}^{m + n}

 \:

 \sf \qquad \dashrightarrow \:  {a}^{m}  \div  {a}^{n}  =  {a}^{m - n}

 \:

 \sf \qquad \dashrightarrow \: ( {a ^{m} )}^{n}  =  {a}^{mn}

 \:

 \sf \qquad \dashrightarrow \:  {a}^{m} . \:  {b}^{m}  =  {ab}^{m}

 \:

 \sf \qquad \dashrightarrow \:  {a}^{ - 1}  =  \dfrac{1}{a}

 \:

 \sf \qquad \dashrightarrow \:  {a}^{0}  = 1

 \\

\qquad_______________

Note : Swipe the screen from left to right in order to view the answer completely in case you are using your mobile.

Similar questions