help in solving the above question
Answers
we know that ,
a^3 + b^3 + c^3 - 3abc = ( a + b + c ) ( a ^2 + b^2 + c^2 - ab - bc - ac )
Use it for solving
mark me brainliest
Answer:
Taking RHS of the identity:
(a + b + c)(a2 + b2 + c2 - ab - bc - ca )
Multiply each term of first polynomial with every term of second polynomial, as shown below:
= a(a2 + b2 + c2 - ab - bc - ca ) + b(a2 + b2 + c2 - ab - bc - ca ) + c(a2 + b2 + c2 - ab - bc - ca )
= { (a X a2) + (a X b2) + (a X c2) - (a X ab) - (a X bc) - (a X ca) } + {(b X a2) + (b X b2) + (b X c2) - (b X ab) - (b X bc) - (b X ca)} + {(c X a2) + (c X b2) + (c X c2) - (c X ab) - (c X bc) - (c X ca)}
Solve multiplication in curly braces and we get:
= a3 + ab2 + ac2 - a2b - abc - a2c + a2b + b3 + bc2 - ab2 - b2c - abc + a2c + b2c + c3 - abc - bc2- ac2
Rearrange the terms and we get:
= a3 + b3 + c3 + a2b - a2b + ac2- ac2 + ab2 - ab2+ bc2 - bc2 + a2c - a2c + b2c - b2c - abc - abc - abc
Above highlighted like terms will be subtracted and we get:
= a3 + b3 + c3 - abc - abc - abc
Join like terms i.e (-abc) and we get:
= a3 + b3 + c3 - 3abc
Hence, in this way we obtain the identity i.e. a3 + b3 + c3 - 3abc = (a + b + c)(a2 + b2 + c2 - ab - bc - ca)