Math, asked by aashi69xgf, 1 year ago

.....help me...... ​

Attachments:

Answers

Answered by Anonymous
5

We have to prove that :

m - n = 1

 \frac{ {9}^{n} . {3}^{2}. {3}^{n}  -  {(27)}^{n}  }{ {( {3}^{m} .2)}^{3} }  =  {3}^{ - 3}  \\  \\  =  >  \frac{ {3}^{2n} . {3}^{2} . {3}^{n} -  {3}^{3n}  }{{3}^{3m}. {2}^{3}  }  =  {3}^{ - 3}  \\  \\  =  >  \frac{1}{8} .( \frac{ {3}^{3n + 2} -  {3}^{3n}  }{ {3}^{3m} } ) =  {3}^{ - 3}  \\  \\  =  >  \frac{1}{8} .( \frac{ {3}^{3n}. {3}^{2} -  {3}^{3n}   }{ {3}^{3m} } ) =  {3}^{ - 3}  \\  \\  =  >  \frac{1}{8} .( \frac{ {3}^{3n} (9 - 1)}{ {3}^{3m} } ) =  {3}^{ - 3}  \\  \\  =  >  \frac{ {3}^{3n} }{ {3}^{3m} }  =  {3}^{ - 3}  \\  \\  =  >  {3}^{3n} . {3}^{ - 3m}  =  {3}^{ - 3}  \\  \\  =  >  {3}^{3n - 3m}  =  {3}^{ - 3}

On comparing :

3n - 3m =  - 3 \\  \\  =  > n - m =  - 1 \\  \\  =  > m - n = 1

HENCE PROVED .....!!

Similar questions