Math, asked by didiiisi, 4 months ago

help me.............. ​

Attachments:

Answers

Answered by BrainlyEmpire
44

\bf GivEn \begin{cases} & \sf{Radius\;of\;cylindrical\;oil\;can,\;r = \bf{7.7\;cm}}  \\ & \sf{Height\;of\;cylindrical\;oil\;can,\;h = \bf{56\;cm}}  \end{cases}\\ \\

Need to find: The quantity of oil in litres that can be stored in the can.

⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━━━

\underline{\bigstar\:\boldsymbol{According\:to\:the\:question\::}}\\ \\

Quantity of oil in that can be stored in can = Volume of oil can

⠀⠀

\dag\;{\underline{\frak{As\;we\;know\;that,}}}\\ \\

\star\;{\boxed{\sf{\pink{Volume_{\;(cylinder)} = \pi r^2 h}}}}\\ \\

Here,

⠀⠀

r = 7.7 cm

h = 56 cm

⠀⠀

\setlength{\unitlength}{1.3mm}\begin{picture}(5,5)\thicklines\multiput(-0.5,-1)(26,0){2}{\line(0,1){40}}\multiput(12.5,-1)(0,3.2){13}{\line(0,1){1.6}}\multiput(12.5,-1)(0,40){2}{\multiput(0,0)(2,0){7}{\line(1,0){1}}}\multiput(0,0)(0,40){2}{\qbezier(1,0)(12,3)(24,0)\qbezier(1,0)(-2,-1)(1,-2)\qbezier(24,0)(27,-1)(24,-2)\qbezier(1,-2)(12,-5)(24,-2)}\multiput(16,2)(0,32){2}{\sf{\footnotesize 7.7 cm}}\put(14,17.5){\sf{\footnotesize 56 cm}}\end{picture}

⠀⠀

\dag\;{\underline{\frak{Putting\;values\;in\;formula,}}}\\ \\

:\implies\sf Volume_{\;(oil\;can)} = \dfrac{22}{ \cancel{7}} \times 7.7 \times 7.7 \times \cancel{56}\\ \\ :\implies\sf Volume_{\;(oil\;can)} = 22 \times 7.7 \times 7.7 \times 8\\ \\ :\implies\sf Volume_{\;(oil\;can)} = 176 \times 7.7 \times 7.7\\ \\ :\implies{\underline{\boxed{\frak{\purple{Volume_{\;(oil\;can)} = 10435.04</p><p>\;cm^3 }}}}}\;\bigstar\\ \\

\dag\;{\underline{\frak{Quantity\;of\;oil\;in\;Litre,}}}\\ \\

We know that,

⠀⠀

1 Litre = 1000 cm³

⠀⠀

:\implies\sf Volume_{\;(oil\;can)} = 10.43504\;L\\ \\

\therefore Quantity of oil in litres that can be stored in the can is 10.43504 L.

⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━━━━

\boxed{\underline{\underline{\bigstar \: \bf\:Formulas\:related\:to\: cylinder\:\bigstar}}} \\  \\

\sf (i)\;Curved\;surface\;area\;of\;cylinder\; = \; \red{2 \pi rh}

⠀⠀⠀⠀⠀⠀⠀

\sf (ii)\;Total\;surface\;area\;of\;cylinder\; = \; \purple{2 \pi r(h + r)}

⠀⠀⠀⠀⠀⠀⠀

\sf (iii)\;Volume\;of\;cylinder\; = \; \pink{ \pi r^2 h}

Answered by Anonymous
22

\bf GivEn \begin{cases} &amp; \sf{Radius\;of\;cylindrical\;oil\;can,\;r = \bf{7.7\;cm}}  \\ &amp; \sf{Height\;of\;cylindrical\;oil\;can,\;h = \bf{56\;cm}}  \end{cases}\\ \\

Need to find: The quantity of oil in litres that can be stored in the can.

⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━━━

\underline{\bigstar\:\boldsymbol{According\:to\:the\:question\::}}\\ \\

Quantity of oil in that can be stored in can = Volume of oil can

⠀⠀

\dag\;{\underline{\frak{As\;we\;know\;that,}}}\\ \\

\star\;{\boxed{\sf{\pink{Volume_{\;(cylinder)} = \pi r^2 h}}}}\\ \\

Here,

⠀⠀

r = 7.7 cm

h = 56 cm

⠀⠀

\setlength{\unitlength}{1.3mm}\begin{picture}(5,5)\thicklines\multiput(-0.5,-1)(26,0){2}{\line(0,1){40}}\multiput(12.5,-1)(0,3.2){13}{\line(0,1){1.6}}\multiput(12.5,-1)(0,40){2}{\multiput(0,0)(2,0){7}{\line(1,0){1}}}\multiput(0,0)(0,40){2}{\qbezier(1,0)(12,3)(24,0)\qbezier(1,0)(-2,-1)(1,-2)\qbezier(24,0)(27,-1)(24,-2)\qbezier(1,-2)(12,-5)(24,-2)}\multiput(16,2)(0,32){2}{\sf{\footnotesize 7.7 cm}}\put(14,17.5){\sf{\footnotesize 56 cm}}\end{picture}

⠀⠀

\dag\;{\underline{\frak{Putting\;values\;in\;formula,}}}\\ \\

:\implies\sf Volume_{\;(oil\;can)} = \dfrac{22}{ \cancel{7}} \times 7.7 \times 7.7 \times \cancel{56}\\ \\ :\implies\sf Volume_{\;(oil\;can)} = 22 \times 7.7 \times 7.7 \times 8\\ \\ :\implies\sf Volume_{\;(oil\;can)} = 176 \times 7.7 \times 7.7\\ \\ :\implies{\underline{\boxed{\frak{\purple{Volume_{\;(oil\;can)} = 10435.04</p><p>\;cm^3 }}}}}\;\bigstar\\ \\

\dag\;{\underline{\frak{Quantity\;of\;oil\;in\;Litre,}}}\\ \\

We know that,

⠀⠀

1 Litre = 1000 cm³

⠀⠀

:\implies\sf Volume_{\;(oil\;can)} = 10.43504\;L\\ \\

\therefore Quantity of oil in litres that can be stored in the can is 10.43504 L.

⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━━━━

\boxed{\underline{\underline{\bigstar \: \bf\:Formulas\:related\:to\: cylinder\:\bigstar}}} \\  \\

\sf (i)\;Curved\;surface\;area\;of\;cylinder\; = \; \red{2 \pi rh}

⠀⠀⠀⠀⠀⠀⠀

\sf (ii)\;Total\;surface\;area\;of\;cylinder\; = \; \purple{2 \pi r(h + r)}

⠀⠀⠀⠀⠀⠀⠀

\sf (iii)\;Volume\;of\;cylinder\; = \; \pink{ \pi r^2 h}

Similar questions