Math, asked by vaibhavkatiyar21110, 3 months ago

Help me and answer this ..I will be much grateful to you....I will be definitely mark you the brainliest if your answer will be correct....help me please ...no spams....please

Attachments:

Answers

Answered by hemanthvadapalli123
3

\huge\bold{Solutions:-}

1) {3}^{ - 3}  =  \frac{1}{ {3}^{3} }

So, multiplicative inverse of

 {3}^{ - 3}  \:  \: is \:  \:  {3}^{3}

Verification:-

 {3}^{ - 3}  \times  {3}^{3}  = 1

 \frac{1}{ {3}^{3} }  \times  {3}^{3}  = 1

 \frac{1}{27}  \times 27 = 1

1 = 1

-----------------------

2)We have,

 {a}^{m} \times  {a}^{n}   =  {a}^{m + n}

(  - {5})^{2}  \times ( -  {5})^{ - 3}

( - 5)^{2 + ( - 3)}

 =  { (- 5)}^{ - 1}

We have,

 {a}^{ - m}  =  \frac{1}{ {a}^{m} }

So,

 {( - 5)}^{ - 1}  =   - \frac{1}{ {  5}^{1} }  =   - \frac{1}{5}

---------------------

3)Refer to the photo - 1

Answer is

 (\frac{2}{3} )^{5}

-------------------

4) {(8)}^{ - 4}  = (2 \times 4)^{ - 4}

 =  > (2 \times  {2}^{2} ) ^{ - 4} =  ({2}^{1 + 2}  ) ^{ - 4}

( {2}^{3} )^{ - 4}  =  {2}^{3 \times  - 4}  =  {2}^{ - 12}

--------------------------

5)( \frac{ {3}^{6} }{ {3}^{8} } )^{4}  \times ( {3})^{ - 4}

We have ,

 \frac{ {a}^{m} }{  {a}^{n}  }  =  {a}^{m - n}

( {3}^{6 - 8} )^{ - 4}

( {3}^{ - 2} ) ^{4}

We have,

( {a}^{m} )^{n}  =  {a}^{mn}

( {3}^{ - 2} ) ^{4} =  {3}^{ - 2 \times 4}   =  {3}^{ - 8}

 {3}^{ - 8}  \times  {3}^{ - 4}

 {3}^{ - 8 + ( - 4)}  =  {3}^{ - 12}

--------------------------

6)( { - 2})^{k  + 1}  \times ( { - 2}^{3} ) = ( { - 2})^{7}

 {a}^{m}  \times  {a}^{n}  =  {a}^{m + n}

( { - 2})^{k + 1 + 3}  = ( { - 2})^{7}

Bases are equal. So,powers also equal

k + 4 = 7

k = 7 - 4 = 3

k = 3

-------------------------

7)Refer to the photo-2

Final answer:-

 \frac{37}{16}

-----------------------

8)(( { \frac{3}{4} })^{ - 2})^{2}

We have,

 ({a}^{m} )^{n}  =  {a}^{mn}

 (\frac{3}{4} )^{ - 2 \times 2}  =  (\frac{3}{4}) ^{ - 4}

We have,

 {a}^{ - m}  =  \frac{1}{ {a}^{m} }

 (\frac{3}{4} )^{ - 4}  = ( { \frac{4}{3} })^{4}

----------------------

9)0.0035 =  \frac{35}{10000}

 =  >  \frac{35}{ {10}^{4} }  = 35 \times  ({10})^{ - 4}

-----------------------

10)

Refer to the photo - 3

--------------

Hope this is helpful \huge\bold{✓}

Attachments:
Similar questions