Math, asked by ImABadCat, 19 days ago

Help me !
Answer if you know !
\begin{gathered} \bf \: Find \: the \: principal \: value \: of \: \cos^{ - 1} ( \frac{ - 1}{2} ) \\ \end{gathered}
_______________________________ Class -12
Ch - 2 Inverse Trigonometric Functions​

Answers

Answered by AliceAllimgham
1

Answer:

if hdl

Step-by-step explanation:

it helphope it help

Attachments:
Answered by Anonymous
14

Step-by-step explanation:

Method 1

 \bf \: let \: y = \cos^{ - 1} ( \frac{ - 1}{2} )

We know that

 \bf \cos^{ - 1} (- x) =  \pi -  \cos^{ - 1} (x)

 \sf \: y =  \pi - cos^{ - 1} ( \frac{1}{2} ) \\  \sf \: y =  \pi -  \frac{\pi}{3}  \\  \sf \: y =  \frac{2x}{3}  \\\bf Since \:  Range \:  of cos^{-1 }is [0,  \pi] \\   \bf \red{Hence, \:  the \:  principal  \: value  \: is  \: \frac{2x}{3}}

Method 2

 \bf \: Let \: y = cos^{ - 1}  \frac{ - 1}{2}

 \sf \cos \: y =  \frac{ - 1}{2}  \\  \sf \: \cos \: y =   \cos \:  ( \frac{2\pi}{3} ) \\ \bf Since \:  Range \:  of cos^{-1 }is [0,  \pi]  \\ \bf \red{Hence, \:  the \:  principal  \: value  \: is  \: \frac{2x}{3}}

Similar questions