Math, asked by prathmking, 20 days ago

HELP ME ASAP GUYZ
HAVE A GREAT DAY : )​

Attachments:

Answers

Answered by user0888
10

\Huge\text{\underline{\underline{Explanation}}}

\Large\text{[Question 3.]}

We are solving question number 3.

Let's solve for the first limiting value. In this question, we see an indeterminate limiting value, \text{$\dfrac{0}{0}$}.

\text{$\cdots\longrightarrow\displaystyle\lim_{y\to0}\dfrac{5y^{3}+8y^{2}}{3y^{4}-16y^{2}}=\dfrac{0}{0}$}

So, it is just discontinuous at y=0.

As y gets closer to 0, this expression gets closer to -\dfrac{1}{2}. Let's see why.

\text{$\cdots\longrightarrow\displaystyle\lim_{y\to0}\dfrac{y^{2}(5y+8)}{y^{2}(3y^{2}-16)}$}

\text{$\cdots\longrightarrow\displaystyle\lim_{y\to0}\dfrac{5y+8}{3y^{2}-16}$}

Now, we can substitute to see what value it approaches. As y\to0, the limiting value is \boxed{-\dfrac{1}{2}}.

\Large\text{[Question 4.]}

We have the same type of question in number 4.

\text{$\cdots\longrightarrow\displaystyle\lim_{x\to-2}\dfrac{-2x-4}{x^{3}+2x^{2}}$}

\text{$\cdots\longrightarrow\displaystyle\lim_{x\to-2}\dfrac{-2(x+2)}{x^{2}(x+2)}$}

\text{$\cdots\longrightarrow\displaystyle\lim_{x\to-2}-\dfrac{2}{x^{2}}$}

Now, we can substitute to see what value it approaches. As x\to-2, the limiting value is \boxed{-\dfrac{1}{2}}.

\Huge\text{\underline{\underline{Learn more}}}

\large\text{Limits involving positive \& negative infinity}

Let's find more solutions of different limits.

If x\to\infty, find the highest degree and divide. Because we know that \displaystyle\lim_{x\to\infty}\dfrac{1}{x}=0 we can evaluate the limit.

E.g -

\text{$\cdots\longrightarrow\displaystyle\lim_{x\to\infty}\dfrac{7x^{2}+8}{3x^{2}+5x+2}$}

\text{$\cdots\longrightarrow\displaystyle\lim_{x\to\infty}\dfrac{\dfrac{1}{x^{2}}(7x^{2}+8)}{\dfrac{1}{x^{2}}(3x^{2}+5x+2)}$}

\text{$\cdots\longrightarrow\displaystyle\lim_{x\to\infty}\dfrac{7+\dfrac{8}{x^{2}}}{3+\dfrac{5}{x}+\dfrac{2}{x^{2}}}$}

\text{$\cdots\longrightarrow\displaystyle\lim_{x\to\infty}\dfrac{7+0}{3+0+0}$}

\large\text{$\cdots\longrightarrow\boxed{\begin{aligned}\dfrac{7}{3}\end{aligned}}$}

If x\to-\infty, consider the substitution of t=-x. This type of question usually involves square roots.

E.g -

\text{$\cdots\longrightarrow\displaystyle\lim_{x\to-\infty}\dfrac{\sqrt{x^{2}+1}}{\sqrt{4x^{2}+x+1}-x}$}

As x\to-\infty, t\to\infty.

\text{$\cdots\longrightarrow\displaystyle\lim_{t\to\infty}\dfrac{\sqrt{t^{2}+1}}{\sqrt{4t^{2}-t+1}+t}$}

Notice the sign changed. Now, we can deal with this limit by dividing by t.

Similar questions