Math, asked by imtyazansari582, 10 months ago

..............help me dear.......​

Attachments:

Answers

Answered by BrainIyMSDhoni
9

Answer :

As in trigonometry there are complementary angles.

So we have some fixed values of complementary angles in trigonometry such as :

sin(90-Φ) = cos Φ

cos (90-Φ) = sin Φ

tan (90-Φ) = cot Φ

cot (90-Φ) = tan Φ

sec (90-Φ) = cosec Φ

cosec (90-Φ) = sec Φ

So given question :-

L. H. S:

=> [cos(90-Φ)/1 + sin(90-Φ)] +

[1+sin(90 - Φ)/cos (90 - Φ)]

=> [sinΦ/1 + cosΦ]+ [1 + cosΦ/sinΦ]

=> sin Φ*sinΦ + (1 + cosΦ)² + sinΦ(1 + cosΦ)

=> sin²Φ + 1+ 2cosΦ + cos²Φ/sinΦ(1 + cosΦ)

=> sin²Φ + cos²Φ + 2cosΦ/sinΦ(1+cosΦ)

=> 1 + 1 + 2cosΦ/sinΦ(1 + cosΦ)

=> 2 + 2cosΦ/sinΦ(1 + cosΦ)

=> 2(1 + cosΦ)/sinΦ(1 + cosΦ)

=> 2/sinΦ

=> 2cosec Φ

[As 1/sinΦ = cosecΦ]

Therefore:-

R. H. S = 2cosec Φ

Now as

L. H. S = R.H.S.

Hence proved.

Answered by Sharad001
52

Question :-

Prove that ,

 \small \frac{  \red{\cos(90 \degree -  \theta)} }{ \green{1 +  \sin(90 \degree -  \theta)} }  +  \frac{ \pink{1 +  \sin(90 \degree -  \theta) }}{  \blue{\cos( 90 \degree -  \theta) }}  = 2 \csc \theta \\

To prove :-

Left hand side (LHS)= Right hand side(LHS)

_________________________________

Used formula :-

 \star \:   \red{\sin(90 \degree -  \theta)}  =  \cos \: \theta \\  \\  \star \blue{  \cos(90 \degree \:  -  \theta) } =  \green{ \sin \: \theta }\:  \\  \\  \star \sf{  \pink{\: {(x + y)}^{2}}  =  {x}^{2}   \red{+  {y}^{2}  +} 2xy} \\  \\  \star \:  \frac{1}{  \red{\sin \: \theta}}  =  \csc \: \theta  \\  \\  \star \green{ { \sin }^{2}  \theta} +    \red{{ \cos}^{2}  \theta }= 1

Proof :-

Firstly take Left hand side (LHS)

 \frac{  \red{\cos(90 \degree -  \theta)} }{ \green{1 +  \sin(90 \degree -  \theta)} }  +  \frac{ \pink{1 +  \sin(90 \degree -  \theta) }}{  \blue{\cos( 90 \degree -  \theta) }} \:  \\  \\  \sf{ \red{by \: used \: the \: given \: condition \: in } } \\  \sf{ \green{used \: formula}} \\  \\  \rightarrow \:   \red{\frac{ \sin \:  \theta }{1 +  \cos \:  \theta }}  +   \green{\frac{1 +  \cos \:  \theta }{ \sin \:  \theta }  }\\  \\  \rightarrow \:  \frac{  \blue{{  \sin  }^{2} \theta} +  {( \red{1  +   \cos \:  \theta})}^{2}  }{ \pink{ \sin \: \theta}( \green{1 +  \cos \: \theta }\: )  }  \\  \\  \rightarrow \:  \:  \frac{  \red{{ \sin}^{2}  \theta + 1} +  { \cos }^{2} \theta +  \pink{2 \cos \:  \theta } }{  \blue{\sin \:  \theta(1 +  \cos \:  \theta)  }}  \\  \\  \rightarrow \:  \frac{2 +  \pink{2 \cos \:  \theta} }{  \red{\sin \:  \theta}(1  \green{+  \cos \:  \theta})  }  \\  \\  \rightarrow \:  \frac{2( \red{1 +  \cos \:  \theta})}{ \sin  \: \theta( \blue{1 +  \cos \theta)}  }  \\  \\  \rightarrow \frac{2}{  \red{ \sin \:  \theta }}  \\  \\  \rightarrow \green{2 \csc \:  \theta}

LHS = RHS ,

hence proved .

_________________________________

Similar questions