Math, asked by sristusudharani, 9 months ago

help me faster please​

Attachments:

Answers

Answered by Explorer123
0

The answer to your questions are given below:

  1. The length of diameter is 13cm.
  2. The area of semicircle is 66.39cm^{2}.
  3. The area of  ΔPQR is 30cm^{2}.

Step-by-step explanation:

We know that, if a right triangle is inscribed in a circle, then its hypotenuse is a diameter of the circle.

ΔPQR is a right angled triangle right angled at P.

1. As ΔPQR is right angled at P, QR is the hypotenuse. QR is the diameter    too.

    By Pythagoras theorem,

    h^{2} = a^{2} + b^{2}

QR^{2} = PR^{2} + PQ^{2}

   QR^{2} = 5^{2} + 12^{2}

   QR^{2} = 25 + 144

   QR^{2} = 169

   QR = \sqrt{169}

   QR = 13cm

The length of Diameter is 13cm.

2.  Diameter of the Circle = 13cm

   Radius of the Circle =  \frac{Diameter}{2}

                                     = \frac{13}{2}

                                     = 6.5cm

   

   Area of Semicircle = Area of Circle/2

                                   = πr^{2} /2

                                   = 3.14 x 6.5 x 6.5 / 2

                                   = 66.39cm^{2}.

The area of semicircle is 66.39cm^{2}.

3. Area of ΔPQR =  \frac{1}{2} × b × h

                           = \frac{1}{2} × 12 × 5

                           = \frac{1}{2} × 60

                           = 30cm^{2}.

The area of ΔPQR is 30cm^{2}.

Sorry Mate, it took me more than 20 minutes to answer your question.

Similar questions