help me...find the solution to this question
Answers
Question :
Prove that ,
Solution :
Taking L.H.S ,
L.H.S = R.H.S [ Proved ]
_________________
Some identities :-
★ sin²A + cos²A = 1
★ 1 + tan²A = sec²A
★ 1 + cot²A = cosec²A
★ cos²A - sin²A = cos2A
Prove that ,
\sf{\dfrac{1+sin\:A}{cosec\:A-cot\:A}-\dfrac{1-sin\:A}{cosec\:A+cot\:A}=2(1+cot\:A)}
cosecA−cotA
1+sinA
−
cosecA+cotA
1−sinA
=2(1+cotA)
Solution :
Taking L.H.S ,
\sf{\dfrac{1+sin\:A}{cosec\:A-cot\:A}-\dfrac{1-sin\:A}{cosec\:A+cot\:A}}
cosecA−cotA
1+sinA
−
cosecA+cotA
1−sinA
\to\sf{\dfrac{(1+sin\:A)(cosec\:A+cot\:A)-(1-sin\:A)(cosec\:A-cot\:A)}{(cosec\:A-cot\:A)(cosec\:A+cot\:A)}}→
(cosecA−cotA)(cosecA+cotA)
(1+sinA)(cosecA+cotA)−(1−sinA)(cosecA−cotA)
\begin{gathered}\\ \to\sf{\dfrac{(cosec\:A+cot\:A+sin\:A\:\:cosec\:A+sin\:A\:\: cot\:A)}{cosec^2A-cot^2A}} \\ \sf - \frac{-(cosec\:A-cot\:A-sin\:A\:\:cosec\:A+sin\:A\:\:cot\:A}{cosec^2A-cot^2A}\end{gathered}
→
cosec
2
A−cot
2
A
(cosecA+cotA+sinAcosecA+sinAcotA)
−
cosec
2
A−cot
2
A
−(cosecA−cotA−sinAcosecA+sinAcotA
\begin{gathered}\\ \to\sf{\dfrac{(cosec\:A+cot\:A+sin\:A\times\dfrac{1}{sin\:A}+sin\:A\times\dfrac{cos\:A}{sin\:A})}{1}} \\ - \sf \frac{(cosec\:A-cot\:A-sin\:A\times\dfrac{1}{sin\:A}+sin\:A\times\dfrac{cos\:A}{sin\:A})}{1}\end{gathered}
→
1
(cosecA+cotA+sinA×
sinA
1
+sinA×
sinA
cosA
)
−
1
(cosecA−cotA−sinA×
sinA
1
+sinA×
sinA
cosA
)
\begin{gathered}\\ \to\sf{(cosec\:A+cot\:A+1+cos\:A)-(cosec\:A-cot\:A-1+cos\:A)}\end{gathered}
→(cosecA+cotA+1+cosA)−(cosecA−cotA−1+cosA)
\to\sf{cosec\:A+cot\:A+1+cos\:A-cosec\:A+cot\:A+1-cos\:A}→cosecA+cotA+1+cosA−cosecA+cotA+1−cosA
\to\sf{2+2cot\:A}→2+2cotA
\to\sf{2(1+cot\:A)}→2(1+cotA)
L.H.S = R.H.S [ Proved ]
_________________
Some identities :-
★ sin²A + cos²A = 1
★ 1 + tan²A = sec²A
★ 1 + cot²A = cosec²A
★ cos²A - sin²A = cos2a
hope
it
help
.