Math, asked by Rukshanaa14, 1 year ago

HELP ME FRIENDS ........​

Attachments:

Answers

Answered by sivaprasath
3

Answer:

Step-by-step explanation:

Given :

The two zeroes of the polynomial p(x) = Lx⁴ + Mx³ + Nx² + Rx + P are, 1 & -1, respectively,.

To Prove :

L + N + P = M + R = 0

Proof :

p(x) = Lx⁴ + Mx³ + Nx² + Rx + P

The zeroes are 1 & -1,.

It means,

By substituting x = 1 & -1 ,.

We'll p(x) = 0

So,

By substituting x = 1 ,

We get,

p(x) = Lx⁴ + Mx³ + Nx² + Rx + P

⇒ p(1) = L(1)⁴ + M(1)³ + N(1)² + R(1) + P

⇒ 0 = L(1) + M(1) + N(1) + R(1) + P

⇒ 0 = L + M + N + R + P ...(i)

_______________

By substituting x = -1 ,

We get,

p(x) = Lx⁴ + Mx³ + Nx² + Rx + P

p(-1) = L(-1)⁴ + M(-1)³ + N(-1)² + R(-1) + P

⇒ 0 = L(1) + M(-1) + N(1) + R(-1) + P

⇒ 0 = L - M + N - R + P ..(ii)

⇒ M + R = L + N + P ...(iii)

_______________

By comparing (i) & (ii),

⇒ L + M + N + R + P = L - M + N - R + P

⇒ L + M + N + R + P - (L - M + N - R + P) = 0

⇒ L - L + M + M + N - N + R + R + P - P = 0

⇒ 2M + 2R = 0

⇒ 2(M + R) = 0 ⇒ M + R = 0 ...(iv)

By (iii) & (iv),

We get,

L + N + P = M + R = 0

Hence, Proved,.

Similar questions