Math, asked by symashah000, 2 months ago

Help me guys waiting for the answer​

Attachments:

Answers

Answered by smjee07012005
0

Step-by-step explanation:

hope it helps... plz mark me as brainliest...

Attachments:
Answered by mathdude500
1

\large\underline{\sf{Given- }}

\rm :\longmapsto\:a : b \:  =  \: c : d

\large\underline{\sf{To\:prove - }}

  \rm :\longmapsto\:( {a}^{2} -  {c}^{2})( {b}^{2} -  {d}^{2}) =  {(ab - cd)}^{2} \quad

\large\underline{\sf{Solution-}}

Given that

\rm :\longmapsto\:a : b \:  =  \: c : d

It means,

\rm :\longmapsto\:\dfrac{a}{b}  = \dfrac{c}{d}

Let assume that

\rm :\longmapsto\:\dfrac{a}{b}  = \dfrac{c}{d}  = k

So,

\rm :\implies\:a = bk

and

\rm :\implies\:c = dk

Now,

Consider,

\rm :\longmapsto\:( {a}^{2} -  {c}^{2})( {b}^{2} -  {d}^{2})

On substituting the values of a and c, we get

\rm \:  =  \:  \: \:( {(bk)}^{2} -  {(dk)}^{2})( {b}^{2} -  {d}^{2})

\rm \:  =  \:  \: \:(  {b}^{2} {k}^{2} -   {d}^{2} {k}^{2})( {b}^{2} -  {d}^{2})

\rm \:  =  \:  \: \: {k}^{2} (  {b}^{2} -   {d}^{2})( {b}^{2} -  {d}^{2})

\rm \:  =  \:  \: \: {k}^{2} (  {b}^{2} -   {d}^{2})^{2}

can be rewritten as

\rm \:  =  \:  \: \: {k}^{2} (  {b}.b -   {d}.d)^{2}

\rm \:  =  \:  \: \: {k}^{2}  \bigg(  {b}.\dfrac{a}{k}  -   {d}.\dfrac{c}{k}  \bigg)^{2}

\red{\bigg \{ \because \: \:\dfrac{a}{b}  = \dfrac{c}{d}  = k\rm \implies\:b =  \dfrac{a}{k} \: and \: d = \dfrac{c}{k}  \bigg\}}\:

\rm \:  =  \:  \: \: {k}^{2}  \bigg(\dfrac{ab - cd}{k}  \bigg)^{2}

\rm \:  =  \:  \:  {k}^{2}  \times \dfrac{ {(ab - cd)}^{2} }{ {k}^{2} }

\rm \:  =  \:  \: (ab - cd)^{2}

Hence,

 \boxed{ \bf :\longmapsto\:( {a}^{2} -  {c}^{2})( {b}^{2} -  {d}^{2}) =  {(ab - cd)}^{2} \quad}

Additional Information :-

\rm :\longmapsto\:\dfrac{a}{b}  = \dfrac{c}{d}, \: then \:

\rm :\longmapsto\:\dfrac{a}{c}  = \dfrac{b}{d}  \: is \: called \: alternendo

\rm :\longmapsto\:\dfrac{b}{a}  = \dfrac{d}{c}  \: is \: called \: invertendo

\rm :\longmapsto\:\dfrac{a + b}{b}  = \dfrac{c + d}{d}  \: is \: called \: componendo

\rm :\longmapsto\:\dfrac{a  -  b}{b}  = \dfrac{c  -  d}{d}  \: is \: called \: dividendo

Similar questions