Math, asked by iswarya2005, 6 months ago

help me....i ll mark u as brainliest ​

Attachments:

Answers

Answered by VishnuPriya2801
12

Question:-

If  \dfrac{ \cos \alpha}{\cos \beta} =  \sf m and  \dfrac{ \cos \alpha}{\sin \beta} = \sf n ,

then prove that ( + ) cos² β = .

Answer:-

Given:

    \dfrac{ \cos \alpha  }{ \cos \beta }  = \sf m \\  \\ \dfrac{ \cos \alpha  }{ \sin \beta }  = \sf n

Squaring both sides we get,

 \star \:  \:  \: \dfrac{ \cos ^{2}  \alpha  }{ \cos  ^{2} \beta }  = \sf m ^{2}  \:  \:  \:    -  -   \: (1) \\\\\star \:  \:  \frac{ { \cos}^{2} \alpha }{ { \sin}^{2}  \beta }  =   \sf{n}^{2}  \:  \:  \:  -  -  \: (2)

Now,

We have to prove that:

( + ) cos² β =

Putting the values from equations (1) & (2) we get,

 \implies \sf \bigg( \dfrac{ { \cos }^{2}  \alpha }{ { \cos }^{2}  \beta }  +  \dfrac{ { { \cos }^{2}  \alpha }}{ { \sin}^{2}   \beta }  \bigg) \times  { \cos }^{2}  \beta  =  {n}^{2}  \\  \\ \\\implies \sf \bigg( \dfrac{ { \cos }^{2}  \alpha  \: { \sin }^{2}  \beta +  { \cos}^{2} \alpha \:  { \cos }^{2}  \beta  }{  \cancel{{ \cos }^{2}  \beta }\:  { \sin}^{2}   \beta }  \bigg) \times   \cancel{{  \cos }^{2}  \beta}  =  {n}^{2}  \\\\  \\ \implies \sf  \frac{ { \cos }^{2}  \alpha ( { \sin }^{2}  \beta  +  { \cos}^{2}  \beta )}{ { \sin}^{2}  \beta }  =  {n}^{2}

Using the identity sin² θ + cos² θ = 1 we get,

 \: \implies \sf  \frac{ { \cos}^{2} \alpha  }{  { \sin }^{2}  \beta }  =  {n}^{2}  \\  \\ \implies  \boxed{\sf \:  {n}^{2}  =  {n}^{2} }

[ From equation (2) ]

Hence, Proved.

Answered by sara122
2

Question:-

If \dfrac{ \cos \alpha}{\cos \beta} = \sf

m and \dfrac{ \cos \alpha}{\sin \beta} = \sf n,

  • then prove that (m² + n²) cos² β = n².

\huge\tt{\boxed{\underbrace{\overbrace{\bold\color{blue}{☛AnSwEr☚}}}}}

Given:

\begin{gathered}\dfrac{ \cos \alpha }{ \cos \beta } = \sf m \\ \\ \dfrac{ \cos \alpha }{ \sin \beta } = \sf n\end{gathered}

  • Squaring both sides we get,

\begin{gathered}\star \: \: \: \dfrac{ \cos ^{2} \alpha }{ \cos ^{2} \beta } = \sf m ^{2} \: \: \: - - \: (1) \\\\\star \: \: \frac{ { \cos}^{2} \alpha }{ { \sin}^{2} \beta } = \sf{n}^{2} \: \: \: - - \: (2)\end{gathered}

Now,

  • We have to prove that:

(m² + n²) cos² β = n²

  • Putting the values from equations (1) & (2) we get,

\begin{gathered}\implies \sf \bigg( \dfrac{ { \cos }^{2} \alpha }{ { \cos }^{2} \beta } + \dfrac{ { { \cos }^{2} \alpha }}{ { \sin}^{2} \beta } \bigg) \times { \cos }^{2} \beta = {n}^{2} \\ \\ \\\implies \sf \bigg( \dfrac{ { \cos }^{2} \alpha \: { \sin }^{2} \beta + { \cos}^{2} \alpha \: { \cos }^{2} \beta }{ \cancel{{ \cos }^{2} \beta }\: { \sin}^{2} \beta } \bigg) \times \cancel{{ \cos }^{2} \beta} = {n}^{2} \\\\ \\ \implies \sf \frac{ { \cos }^{2} \alpha ( { \sin }^{2} \beta + { \cos}^{2} \beta )}{ { \sin}^{2} \beta } = {n}^{2}\end{gathered}

  • Using the identity sin² θ + cos² θ = 1 we get,

\begin{gathered}\: \implies \sf \frac{ { \cos}^{2} \alpha }{ { \sin }^{2} \beta } = {n}^{2} \\ \\ \implies \boxed{\sf \: {n}^{2} = {n}^{2} }\end{gathered}

[ From equation (2) ]

  • Hence, Proved.
Similar questions