Math, asked by ry185136, 2 months ago

help me immediately please​

Attachments:

Answers

Answered by guptavishrut
0

Answer:

n=4

Step-by-step explanation:

Answered by diajain01
77

{\boxed{\underline{\tt{ \orange{Required  \:  \: Answer:-}}}}}

◉GIVEN:-

 \frac{ {9}^{n} \times  {3}^{2}   \times  {3}^{n}  -  {(27)}^{n} }{{ {(3}^{3)} }^{5} \:  \times  {2}^{3} } =  \frac{1}{27}

◉ TO FIND:-

  • value of n.

◉SOLUTION:-

  : \longrightarrow \:  \frac{ {3}^{2n}  \times  {3}^{2} \times  {3}^{n}   -  {3}^{3n} }{ {3}^{3m}  \times  {2}^{3} } =  \frac{1}{27}

 :  \longrightarrow \:  \frac{ {3}^{(2n + 2 + n)}  -  {(3}^{3) {}^{n} } }{ {3}^{15}  \times  {2}^{3} }   =  \frac{1}{27}

:  \longrightarrow \:  \frac{ {3}^{(3n + 2)}  -  ({3}^{ {3)}^{n} } }{ {3}^{15} \times  {2}^{3}  } =  \frac{1}{27}

 : \longrightarrow \: \frac{ {3}^{3n}  \times  {3}^{2} -  {3}^{3n}  }{ {3}^{15}  \times  {2}^{3} }   =  \frac{1}{27}

:  \longrightarrow \:   \frac{ {3}^{3n}  \times ( {3}^{2}  - 1)}{ {3}^{15} \times  {2}^{3}  }   =  \frac{1}{27}

 :  \longrightarrow \: = \frac{  {3}^{3n}   \times ( 9  - 1)}{ {3}^{15} \times  {2}^{3}  }\frac{1}{27}

 :  \longrightarrow \:  \frac{  {3}^{3n}   \times ( 8)}{ {3}^{15} \times  {2}^{3}  } = \frac{1}{27}

As 8 can also be written as 2^3.

 :  \longrightarrow \: \frac{  {3}^{3n}   \times (   \cancel{{2}^{3} )}}{ {3}^{15} \times   \cancel{{2}^{3}  }} = \frac{1}{27}

 :  \longrightarrow \: \frac{  {3}^{3n}}{ {3}^{15}} = \frac{1}{27}

Taking 3^15 to the numerator

:  \longrightarrow \:   {3}^{3n - 15}   =  \frac{1}{27}

:  \longrightarrow \:   {3}^{3n - 15} =  \frac{1}{ {3}^{3}  }

:  \longrightarrow \:   {3}^{3n - 15} =  {3}^{ - 3}

Comparing the powers:-

 :  \longrightarrow\: 3n - 15 =  - 3

 :  \longrightarrow\: 3n =  - 3 + 15

 :  \longrightarrow\: 3n  = 12

 :  \longrightarrow\: n =  \frac{12}{3}

{ \boxed{ \underline{ \bf{ \blue{n = 4}}}}}

HENCE,

the value of n is 4.

Similar questions