Math, asked by basithacker55, 3 days ago

help me in solving the question.

Attachments:

Answers

Answered by mathdude500
8

\large\underline{\sf{Given \:Question - }}

Solve the following equation :-

\rm :\longmapsto\: {2sin}^{2}x + 2 \sqrt{2} sinx - 3 = 0

 \purple{\large\underline{\sf{Solution-}}}

Given Trigonometric equation is

\rm :\longmapsto\: {2sin}^{2}x + 2 \sqrt{2} sinx - 3 = 0

On splitting the middle terms, we get

\rm :\longmapsto\: {2sin}^{2}x + 3 \sqrt{2} sinx  -  \sqrt{2} sinx- 3 = 0

can be rewritten as

\rm :\longmapsto\:  \sqrt{2}  \times  \sqrt{2} {sin}^{2}x + 3 \sqrt{2} sinx  -  \sqrt{2} sinx- 3 = 0

\rm :\longmapsto\: \sqrt{2}sinx( \sqrt{2}sinx + 3) - 1( \sqrt{2}sinx + 3) = 0

\rm :\longmapsto\: (\sqrt{2}sinx - 1)( \sqrt{2}sinx + 3) = 0

\bf\implies \:sinx = \dfrac{1}{ \sqrt{2} }  \:  \: or \:  \:  - \dfrac{3}{ \sqrt{2} }  \:  \{rejected \}

\bf\implies \:sinx =sin \dfrac{\pi}{4}  \:

We know,

\boxed{ \tt{ \: sinx = siny \: \rm \implies\:y = n\pi +  {( - 1)}^{n}y\: \forall \: n \in \: Z}}

So, using this identity, we get

 \red{\bf\implies \:\boxed{ \tt{ \: x = n\pi +  {( - 1)}^{n}\dfrac{\pi}{4} \: \: \forall \: n \in \: Z \:  \: }}}

Additional Information :-

 \red{\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf T-eq & \bf Solution \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf sinx = 0 & \sf x = n\pi  \: \forall \: n \in \: Z\\ \\ \sf cosx = 0 & \sf x = (2n + 1)\dfrac{\pi}{2}\: \forall \: n \in \: Z\\ \\ \sf tanx = 0 & \sf x = n\pi\: \forall \: n \in \: Z\\ \\ \sf sinx = siny & \sf x = n\pi + {( - 1)}^{n}y \: \forall \: n \in \: Z\\ \\ \sf cosx = cosy & \sf x = 2n\pi \pm \: y\: \forall \: n \in \: Z\\ \\ \sf tanx = tany & \sf x = n\pi + y \: \forall \: n \in \: Z\end{array}} \\ \end{gathered}\end{gathered}}

Answered by XxitsmrseenuxX
2

Answer:

\large\underline{\sf{Given \:Question - }}

Solve the following equation :-

\rm :\longmapsto\: {2sin}^{2}x + 2 \sqrt{2} sinx - 3 = 0

 \purple{\large\underline{\sf{Solution-}}}

Given Trigonometric equation is

\rm :\longmapsto\: {2sin}^{2}x + 2 \sqrt{2} sinx - 3 = 0

On splitting the middle terms, we get

\rm :\longmapsto\: {2sin}^{2}x + 3 \sqrt{2} sinx  -  \sqrt{2} sinx- 3 = 0

can be rewritten as

\rm :\longmapsto\:  \sqrt{2}  \times  \sqrt{2} {sin}^{2}x + 3 \sqrt{2} sinx  -  \sqrt{2} sinx- 3 = 0

\rm :\longmapsto\: \sqrt{2}sinx( \sqrt{2}sinx + 3) - 1( \sqrt{2}sinx + 3) = 0

\rm :\longmapsto\: (\sqrt{2}sinx - 1)( \sqrt{2}sinx + 3) = 0

\bf\implies \:sinx = \dfrac{1}{ \sqrt{2} }  \:  \: or \:  \:  - \dfrac{3}{ \sqrt{2} }  \:  \{rejected \}

\bf\implies \:sinx =sin \dfrac{\pi}{4}  \:

We know,

\boxed{ \tt{ \: sinx = siny \: \rm \implies\:y = n\pi +  {( - 1)}^{n}y\: \forall \: n \in \: Z}}

So, using this identity, we get

 \red{\bf\implies \:\boxed{ \tt{ \: x = n\pi +  {( - 1)}^{n}\dfrac{\pi}{4} \: \: \forall \: n \in \: Z \:  \: }}}

Additional Information :-

 \red{\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf T-eq & \bf Solution \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf sinx = 0 & \sf x = n\pi  \: \forall \: n \in \: Z\\ \\ \sf cosx = 0 & \sf x = (2n + 1)\dfrac{\pi}{2}\: \forall \: n \in \: Z\\ \\ \sf tanx = 0 & \sf x = n\pi\: \forall \: n \in \: Z\\ \\ \sf sinx = siny & \sf x = n\pi + {( - 1)}^{n}y \: \forall \: n \in \: Z\\ \\ \sf cosx = cosy & \sf x = 2n\pi \pm \: y\: \forall \: n \in \: Z\\ \\ \sf tanx = tany & \sf x = n\pi + y \: \forall \: n \in \: Z\end{array}} \\ \end{gathered}\end{gathered}}

Similar questions