Math, asked by dreamgirl52, 1 year ago

help me in this question guys!!

solve
 \frac{ |x + 3| +  x}{x + 2}  > 1

Answers

Answered by TheInsaneGirl
36
 <b> <u> Heya! </b> </u>

____________________________________________________________

 <b> <u> <i> Linear Inequalities</i> </b> </u>

→ Given Equation :

 = > \frac{ |x + 3| + x }{x + 2} > 1 \\ \\ = > \frac{ |x + 3| + x }{x + 2} - 1 > 0 \\ \\ = > \frac{ |x + 3| + x - x - 2 }{x + 2} > 0 \\ \\ = > \frac{ |x + 3| - 2 }{x + 2} > 0

•°•  <u> We have two cases now </u>

 <b> Case 1 : When x ≥ -3 </b>

 = > \: in \: this \: case = |x + 3| = x + 3 \\ \\ = > \frac{x + 3 - 2}{x + 2} > 0 \\ \\ = > \frac{x + 1}{x + 2} > 0

°•° For this equation , solution set is -

 <b> x € ( - ∞ , -2 ) U ( -1 , ∞ ) </b>

But here x≥ -3 so the solution set is

 <b> <u> [ -3 , -2 ) U ( -1 , ∞ ) </u> </b>

________________________________________

 <b> Case 2 : When x < -3 </b>

 = > \frac{ - (x + 3) - 2}{x + 2} > 0 \\ \\ = > \frac{ - (x + 5)}{x + 2} > 0 \\ \\ = > \frac{x + 5}{x + 2} < 0

°•° For this equation , solution set is -

 &lt;b&gt; x € ( -5 , -3 ) &lt;/b&gt; [ by using x <-3 ]

 &lt;i&gt;&lt;u&gt;from Case 1 and 2 we get the final solution set : &lt;/i&gt;&lt;/u&gt;

=> &lt;b&gt; Solution =  ( -5 , -2 ) U ( -1 , ∞ ) ✔&lt;/b&gt;

___________________________________________________________
Answered by Anonymous
4

Step-by-step explanation:

Answer:x=-5,x=2

Step-by-step explanation:

(x+1)(x+2)+(x-2)(x-1)/(x-1)(x+2)=3

x^2+2x+x+2+x^2-x-2x+2/x^2+2x-x-2=3

2x^2+3x-3x+4=3x^2+3x-6

2x^2+4=3x^2+3x-6

0=3x^2-2x^2+3x-10

x^2+3x-10=0

x^2+(5-2)x-10=0

x^2+5x-2x-10=0

x(x+5)-2(x+5)=0

(x+5)(x-2)

x=-5

x=2

Similar questions