Math, asked by Anonymous, 20 hours ago

help me

Nonsense/No solution = report​

Attachments:

Answers

Answered by mathdude500
16

\large\underline{\sf{Solution-1}}

\rm \:  {x}^{2}  + 8x + 7

\rm \: =  \:   {x}^{2}  + 7x + x + 7

\rm \:  =  \: x(x + 7) + 1(x + 7)

\rm \:  =  \: (x + 7)(x + 1)

Hence,

\rm\implies \:\boxed{\tt{  {x}^{2} + 8x + 7 =  \: (x + 7)(x + 1) \: }} \\

 \red{\large\underline{\sf{Solution-2}}}

\rm \:  {x}^{2} - 11x + 10

\rm \:  =  \:  {x}^{2} - 10x - x + 10

\rm \:  =  \: x(x - 10) - 1(x - 10)

\rm \:  =  \: (x - 10)(x - 1)

Hence,

\rm\implies \:\boxed{\tt{  {x}^{2} - 11x + 10   =  \: (x - 10)(x - 1) \: }} \\

 \red{\large\underline{\sf{Solution-3}}}

\rm \:  {x}^{2} + x - 90

\rm \:  =  \:  {x}^{2} + 10x - 9x - 90

\rm \:  =  \: x(x + 10) - 9(x + 10)

\rm \:  =  \: (x + 10)(x - 9)

Hence,

\rm\implies \:\boxed{\tt{  {x}^{2} + x - 90 = (x + 10)(x - 9) \: }} \\

 \red{\large\underline{\sf{Solution-4}}}

\rm \:  {x}^{2} + 4x - 12

\rm \:  =  \:  {x}^{2} + 6x - 2x - 12

\rm \:  =  \: x(x + 6) - 2(x + 6)

\rm \:  =  \: (x + 6)(x - 2)

Hence,

\rm\implies \:\boxed{\tt{  {x}^{2} + 4x - 12 =  \: (x + 6)(x - 2) \: }} \\

 \red{\large\underline{\sf{Solution-5}}}

\rm \:  {x}^{2} - 10x + 9

\rm \:  =  \:  {x}^{2} - 9x  - x+ 9

\rm \:  =  \: x(x - 9) - 1(x - 9)

\rm \:  =  \: (x - 9)(x - 1)

Hence,

\rm\implies \:\boxed{\tt{  {x}^{2} - 10x + 9  =  \: (x - 9)(x - 1) \: }} \\

 \red{\large\underline{\sf{Solution-6}}}

\rm \:  {3x}^{2} - 2x - 5

\rm \:  =  \:  {3x}^{2} - 5x + 3x - 5

\rm \:  =  \: x(3x - 5)  + 1(3x - 5)

\rm \:  =  \: (3x - 5)(x + 1)

Hence,

\rm\implies \:\boxed{\tt{  {3x}^{2} - 2x - 5  =  \: (3x - 5)(x + 1) \: }} \\

 \red{\large\underline{\sf{Solution-7}}}

\rm \:  {2x}^{2} + 3x - 9

\rm \:  =  \:  {2x}^{2} + 6x - 3x - 9

\rm \:  =  \: 2x(x + 3) - 3(x + 3)

\rm \:  =  \: (x + 3)(2x - 3)

Hence,

\rm\implies \:\boxed{\tt{  {2x}^{2} + 3x - 9 =  \: (x + 3)(2x - 3) \: }} \\

So,

\begin{gathered}\boxed{\begin{array}{c|c} \bf Quadratic \: expression  & \bf Factors \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf  {x}^{2} + 8x + 7  & \sf (x + 1)(x + 7) \\ \\ \sf  {x}^{2} - 11x + 10  & \sf (x - 10)(x - 1)\\ \\ \sf  {x}^{2} + x - 90  & \sf (x + 10)(x - 9)\\ \\ \sf  {x}^{2} + 4x - 12  & \sf (x + 6)(x - 2)\\ \\ \sf  {x}^{2} - 10 + 9  & \sf (x - 9)(x - 1)\\ \\ \sf  {3x}^{2} - 2x - 5 & \sf (x + 1)(3x - 5) \\ \\ \sf 2 {x}^{2} + 3x - 9 & \sf (x + 3)(2x - 3) \end{array}} \\ \end{gathered}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

BASIC CONCEPT USED

Splitting of middle terms :-

In order to factorize  ax² + bx + c we have to split b in terms of m and n in such a way that m + n = b and mn = ac.

After finding m and n, we split the middle term b in the quadratic expression as mx + nx and get required factors by grouping the terms.

Answered by EmperorSoul
2

\large\underline{\sf{Solution-1}}

\rm \:  {x}^{2}  + 8x + 7

\rm \: =  \:   {x}^{2}  + 7x + x + 7

\rm \:  =  \: x(x + 7) + 1(x + 7)

\rm \:  =  \: (x + 7)(x + 1)

Hence,

\rm\implies \:\boxed{\tt{  {x}^{2} + 8x + 7 =  \: (x + 7)(x + 1) \: }} \\

 \red{\large\underline{\sf{Solution-2}}}

\rm \:  {x}^{2} - 11x + 10

\rm \:  =  \:  {x}^{2} - 10x - x + 10

\rm \:  =  \: x(x - 10) - 1(x - 10)

\rm \:  =  \: (x - 10)(x - 1)

Hence,

\rm\implies \:\boxed{\tt{  {x}^{2} - 11x + 10   =  \: (x - 10)(x - 1) \: }} \\

 \red{\large\underline{\sf{Solution-3}}}

\rm \:  {x}^{2} + x - 90

\rm \:  =  \:  {x}^{2} + 10x - 9x - 90

\rm \:  =  \: x(x + 10) - 9(x + 10)

\rm \:  =  \: (x + 10)(x - 9)

Hence,

\rm\implies \:\boxed{\tt{  {x}^{2} + x - 90 = (x + 10)(x - 9) \: }} \\

 \red{\large\underline{\sf{Solution-4}}}

\rm \:  {x}^{2} + 4x - 12

\rm \:  =  \:  {x}^{2} + 6x - 2x - 12

\rm \:  =  \: x(x + 6) - 2(x + 6)

\rm \:  =  \: (x + 6)(x - 2)

Hence,

\rm\implies \:\boxed{\tt{  {x}^{2} + 4x - 12 =  \: (x + 6)(x - 2) \: }} \\

 \red{\large\underline{\sf{Solution-5}}}

\rm \:  {x}^{2} - 10x + 9

\rm \:  =  \:  {x}^{2} - 9x  - x+ 9

\rm \:  =  \: x(x - 9) - 1(x - 9)

\rm \:  =  \: (x - 9)(x - 1)

Hence,

\rm\implies \:\boxed{\tt{  {x}^{2} - 10x + 9  =  \: (x - 9)(x - 1) \: }} \\

 \red{\large\underline{\sf{Solution-6}}}

\rm \:  {3x}^{2} - 2x - 5

\rm \:  =  \:  {3x}^{2} - 5x + 3x - 5

\rm \:  =  \: x(3x - 5)  + 1(3x - 5)

\rm \:  =  \: (3x - 5)(x + 1)

Hence,

\rm\implies \:\boxed{\tt{  {3x}^{2} - 2x - 5  =  \: (3x - 5)(x + 1) \: }} \\

 \red{\large\underline{\sf{Solution-7}}}

\rm \:  {2x}^{2} + 3x - 9

\rm \:  =  \:  {2x}^{2} + 6x - 3x - 9

\rm \:  =  \: 2x(x + 3) - 3(x + 3)

\rm \:  =  \: (x + 3)(2x - 3)

Hence,

\rm\implies \:\boxed{\tt{  {2x}^{2} + 3x - 9 =  \: (x + 3)(2x - 3) \: }} \\

So,

\begin{gathered}\boxed{\begin{array}{c|c} \bf Quadratic \: expression  & \bf Factors \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf  {x}^{2} + 8x + 7  & \sf (x + 1)(x + 7) \\ \\ \sf  {x}^{2} - 11x + 10  & \sf (x - 10)(x - 1)\\ \\ \sf  {x}^{2} + x - 90  & \sf (x + 10)(x - 9)\\ \\ \sf  {x}^{2} + 4x - 12  & \sf (x + 6)(x - 2)\\ \\ \sf  {x}^{2} - 10 + 9  & \sf (x - 9)(x - 1)\\ \\ \sf  {3x}^{2} - 2x - 5 & \sf (x + 1)(3x - 5) \\ \\ \sf 2 {x}^{2} + 3x - 9 & \sf (x + 3)(2x - 3) \end{array}} \\ \end{gathered}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

BASIC CONCEPT USED

Splitting of middle terms :-

In order to factorize  ax² + bx + c we have to split b in terms of m and n in such a way that m + n = b and mn = ac.

After finding m and n, we split the middle term b in the quadratic expression as mx + nx and get required factors by grouping the terms.

Similar questions