Math, asked by patatobharti, 5 hours ago

help me number 9 help me plss be fast​

Attachments:

Answers

Answered by Anonymous
19

Answer:

Qᴜᴇsᴛɪᴏɴ :

↝ Find to the nearest rupee the compound interest on ₹1800 for 3 years at 5% rate of interest, compound annually.

\begin{gathered}\end{gathered}

Gɪɴ :

  • ➛ Principle = Rs.1800
  • ➛ Time = 3 years
  • ➛ Rate of Interest = 5%

\begin{gathered}\end{gathered}

T Fɪɴ :

  • ➛ Amount
  • ➛ Compound

\begin{gathered}\end{gathered}

Cɴ :

↝ First we will find the Amount using the formula to calculate compound interest. Where, Principle is Rs.1800, ↝ Rate is 5% and Time is 3 years. Then we will use the formula to find the compound interest.

\begin{gathered}\end{gathered}

Usɪɴɢ Fʀʟs :

\longrightarrow\small{\underline{\boxed{\pmb{\sf{A= P\bigg(1 + \dfrac{ {R}}{100} \bigg)^{T}}}}}}

\longrightarrow\small{\underline{\boxed{\pmb{\sf{{C.I=A- P}}}}}}

☼ Where :-

  • ➛ A = Amount
  • ➛ P = Principle
  • ➛ R = Rate
  • ➛ T = Time
  • ➛ C.I = Compound Interest

\begin{gathered}\end{gathered}

Sʟɪɴ :

☼ Finding amount by substituting the values in the formula :-

\longrightarrow\small{\sf{Amount= P\bigg(1 + \dfrac{ {R}}{100} \bigg)^{T}}}

\longrightarrow\small{\sf{Amount= 1800\bigg(1 + \dfrac{{5}}{100} \bigg)^{3}}}

{\longrightarrow{\small{\sf{Amount= 1800\bigg( \dfrac{(1 \times 100) + (5 \times 1)}{100} \bigg)^{3}}}}}

{\longrightarrow{\small{\sf{Amount= 1800\bigg( \dfrac{100 + 5}{100} \bigg)^{3}}}}}

{\longrightarrow{\small{\sf{Amount= 1800\bigg( \dfrac{105}{100} \bigg)^{3}}}}}

{\longrightarrow{\small{\sf{Amount= 1800\bigg( \cancel{\dfrac{105}{100}} \bigg)^{3}}}}}

{\longrightarrow{\small{\sf{Amount= 1800\bigg( {\dfrac{21}{20}} \bigg)^{3}}}}}

{\longrightarrow{\small{\sf{Amount= 1800\bigg(\dfrac{21}{20} \times \dfrac{21}{20}  \times \dfrac{21}{20}\bigg)}}}}

{\longrightarrow{\small{\sf{Amount= 1800\bigg(\dfrac{9261}{8000}\bigg)}}}}

{\longrightarrow{\small{\sf{Amount= 1800 \times \dfrac{9261}{8000}}}}}

{\longrightarrow{\small{\sf{Amount= 18\cancel{00} \times \dfrac{9261}{80 \cancel{00}}}}}}

{\longrightarrow{\small{\sf{Amount= 18\times \dfrac{9261}{80}}}}}

{\longrightarrow{\small{\sf{Amount= \dfrac{18 \times 9261}{80}}}}}

{\longrightarrow{\small{\sf{Amount= \dfrac{166698}{80}}}}}

{\longrightarrow{\small{\sf{Amount= Rs.2083.725}}}}

{\longrightarrow{\small{\underline{\boxed{\sf{Amount= Rs.2083.725}}}}}}

∴ The amount is Rs.2083.725 or Rs.2083.73.

━┅━┅━┅━┅━┅━┅━┅━┅━┅━┅━

☼ Finding compound interest by substituting the values in the formula :-

\longrightarrow\small{\sf{Compound  \: Interest=A- P}}

{\longrightarrow{\small{\sf{Compound  \: Interest=2083.725- 1800}}}}

{\longrightarrow{\small{\sf{Compound  \: Interest=Rs.283.725}}}}

{\longrightarrow{\small{\underline{\boxed{\sf{Compound\:Interest=Rs.283.725}}}}}}

∴ The compound interest is Rs.283.725 or Rs.283.73.

\begin{gathered}\end{gathered}

Lʀɴ Mʀ :

\dashrightarrow\small{\underline{\boxed{\sf{\green{Amount = Principle + Interest}}}}}

\dashrightarrow\small{\underline{\boxed{\sf{\green{ Principle=Amount - Interest }}}}}

\dashrightarrow\small{\underline{\boxed{\sf{\green{ Simple \: Interest = \dfrac{P \times R \times T}{100}}}}}}

\dashrightarrow{\small{\underline{\boxed{\sf{\green{Amount={P{\bigg(1 + \dfrac{R}{100}{\bigg)}^{T}}}}}}}}}

\dashrightarrow\small{\underline{\boxed{\sf{\green{Principle = \dfrac{Amount\times 100 }{100 + (Time \times Rate)}}}}}}

\dashrightarrow\small{\underline{\boxed{\sf{\green{Principle = \dfrac{Interest \times 100 }{Time \times Rate}}}}}}

\dashrightarrow\small{\underline{\boxed{\sf{\green{Rate = \dfrac{Simple \: Interest \times 100}{Principle \times Time}}}}}}

\underline{\rule{220pt}{2.5pt}}

Similar questions