Math, asked by mahbubdip, 11 months ago

help me out.. I'm noob

Attachments:

Answers

Answered by ITzBrainlyGuy
8

Answer:

 \int \frac{ \cos(x) }{  \cos(x) +  \sin(x) } dx

Use substitution

 \int \frac{ \frac{1 -  { \tan( \frac{x}{2} ) }^{2} }{1 +  { \tan( \frac{x}{2} ) }^{2} } }{ \frac{1 -  { \tan( \frac{x}{2} ) }^{2} }{1 +  { \tan( \frac{x}{2} ) }^{2} } +  \frac{2 \tan( \frac{x}{2} ) }{1 -  { \tan( \frac{x}{2} ) }^{2} }  } dx

Substitute the differential

 \int \frac{ \frac{1 -  { \tan( \frac{x}{2} ) }^{2} }{1 +  { \tan( \frac{x}{2} ) }^{2} } }{ \frac{1 -  { \tan( \frac{x}{2} ) }^{2} }{1 +  { \tan( \frac{x}{2} ) }^{2} } +  \frac{2 \tan( \frac{x}{2} ) }{1  +   { \tan( \frac{x}{2} ) }^{2} }  }  \times  \frac{1}{ \frac{1}{2}(1 +  { \tan(  \frac{x}{2} ) ) }^{2}  } dt

substitute 't' instead of tan(x/2)

 \int \dfrac{ \frac{1 -  { t}^{2} }{1 +  { t }^{2} } }{ \frac{1 -  { t }^{2} }{1 +  {t}^{2} } +  \frac{2 t}{1  +   { t}^{2} }  } \times  \frac{1}{ \frac{1}{2} (1 +  {t}^{2} )}   dt

\int \dfrac{ \frac{1 -  { t}^{2} }{1 +  { t }^{2} } }{  \frac{1 -  {t}^{2} +  2 t}{1  +   { t}^{2} }  } \times  \frac{1}{ \frac{1}{2}  +  \frac{ {t}^{2} }{2} }    dt

Simplify

 \int \frac{1 -  {t}^{2} }{1 -  {t}^{2}  + 2t}  \times  \frac{2}{1 +  {t}^{2} } dt

Multiply the fraction

 \int \frac{2 - 2 {t}^{2} }{(1 -  {t}^{2} + 2t)(1 +  {t}^{2} ) }dt

Rewrite the fraction

 \int \frac{ - t + 1}{1 -  {t}^{2}  + 2t}  +  \frac{ - t + 1}{1 +  {t}^{2} } dt

Use the properties of integrals

 \int \frac{ - t + 1}{1 -  {t}^{2}  + 2t} dt \int  \frac{ - t + 1}{1  +  {t}^{2} }dt

Evaluate the integrals

 \frac{1}{2 }  \times   ln( |1 -  {t}^{2} + 2t | )  -  \frac{1}{2}  \times ln  (1 +  {t}^{2} ) +  \arctan(t)

Now,

here t = tan(x/2)

\frac{1}{2 }  \times   ln( |1 -  { \tan( \frac{x}{2} ) }^{2} + 2 \tan( \frac{x}{2} )  | )  -  \frac{1}{2}  \times ln  (1 +  { \tan( \frac{x}{2} ) }^{2} ) +  \arctan( \tan( \frac{x}{2} ) )

\frac{1}{2 }  \times   \ln( |1 -  { \tan( \frac{x}{2} ) }^{2} + 2 \tan( \frac{x}{2} )  | )  -  \frac{1}{2}  \times  \ln  (1 +  { \tan( \frac{x}{2} ) }^{2} ) +   \frac{x}{2}

Add the constant of integration ‘C’

\frac{1}{2 }  \times   \ln( |1 -  { \tan( \frac{x}{2} ) }^{2} + 2 \tan( \frac{x}{2} )  | )  -  \frac{1}{2}  \times  \ln  (1 +  { \tan( \frac{x}{2} ) }^{2} ) +   \frac{x}{2}  + C

Here,

 C\in \: {\mathbb{R}}

Answered by shadowsabers03
8

Given,

\displaystyle\longrightarrow\sf{\int\dfrac {\cos x}{\cos x+\sin x}\ dx}

We can divide both the numerator and the denominator by \displaystyle\sf {\cos x.}

\displaystyle\longrightarrow\sf{\int\dfrac {\cos x}{\cos x+\sin x}\ dx=\int\dfrac {\frac {\cos x}{\cos x}}{\frac {\cos x+\sin x}{\cos x}}\ dx}

\displaystyle\longrightarrow\sf{\int\dfrac {\cos x}{\cos x+\sin x}\ dx=\int\dfrac {1}{1+\tan x}\ dx}

We can write the numerator 1 as follows:

\displaystyle\longrightarrow\sf{1=\dfrac {1+\tan x+1-\tan x}{2}}

Then the integral becomes,

\displaystyle\longrightarrow\sf{\int\dfrac {\cos x}{\cos x+\sin x}\ dx=\int\dfrac {1+\tan x+1-\tan x}{2(1+\tan x)}\ dx}

\displaystyle\longrightarrow\sf{\int\dfrac {\cos x}{\cos x+\sin x}\ dx=\dfrac {1}{2}\int\left (\dfrac {1+\tan x}{1+\tan x}+\dfrac {1-\tan x}{1+\tan x}\right)\ dx}

\displaystyle\longrightarrow\sf{\int\dfrac {\cos x}{\cos x+\sin x}\ dx=\dfrac {1}{2}\int\left (1+\dfrac {1-\frac {\sin x}{\cos x}}{1+\frac {\sin x}{\cos x}}\right)\ dx}

\displaystyle\longrightarrow\sf{\int\dfrac {\cos x}{\cos x+\sin x}\ dx=\dfrac {1}{2}\int\left (1+\dfrac {\frac {\cos x-\sin x}{\cos x}}{\frac {\cos x+\sin x}{\cos x}}\right)\ dx}

\displaystyle\longrightarrow\sf{\int\dfrac {\cos x}{\cos x+\sin x}\ dx=\dfrac {1}{2}\int\left (1+\dfrac {\cos x-\sin x}{\cos x+\sin x}\right)\ dx}

\displaystyle\longrightarrow\sf{\int\dfrac {\cos x}{\cos x+\sin x}\ dx=\dfrac {1}{2}\int1\ dx+\dfrac {1}{2}\int\dfrac {\cos x-\sin x}{\cos x+\sin x}\ dx}

Since \displaystyle\sf {\dfrac {d}{dx}\left [\sin x+\cos x\right]=\cos x-\sin x,}

\displaystyle\longrightarrow\sf{\int\dfrac {\cos x}{\cos x+\sin x}\ dx=\dfrac {x}{2}+\dfrac {1}{2}\ln\left|\cos x+\sin x\right|+c}

\displaystyle\longrightarrow\sf{\underline {\underline {\int\dfrac {\cos x}{\cos x+\sin x}\ dx=\dfrac{x+\ln\left|\cos x+\sin x\right|}{2}+c}}}

Similar questions