help me please.... factorisation
Answers
Step-by-step explanation:
Solution:-
13)
Given expression is (x+1)^6-(x-1)^6
It can be written as
=> [(x+1)^2]^3 - [(x-1)^2]^3
This is in the form of a^3-b^3
Where a = (x+1)^2 and b = (x-1)^2
We know that
a^3 - b^3 = (a-b)(a^2+ab+b^2)
=>[ (x+1)^2-(x-1)^2][(x+1)^4+(x+1)^2(x-1)^2+(x-1)^4]
=> (x+1+x-1)(x+1-x+1)[(x+1)^4+(x+1)^2(x-1)^2+(x-1)^4]
=> (2x)(2)[(x+1)^4+(x+1)^2(x-1)^2+(x-1)^4]
=> (4x)[(x+1)^4+(x+1)^2(x-1)^2+(x-1)^4]
(x+1)^6-(x-1)^6
=(4x)[(x+1)^4+(x+1)^2(x-1)^2+(x-1)^4]
14)
Given expression is 3a^7b - 81a^4b^4
=> 3a^4b(a^3-27b^3)
=> 3a^4b(a^3-(3b)^3)
=> 3a^4b(a-3b)(a^2+3ab+9b^2)
Since a^3 - b^3 = (a-b)(a^2+ab+b^2)
3a^7b - 81a^4b^4 =
3a^4b(a-3b)(a^2+3ab+9b^2)
15)
Given expression is
9(x+y)^2-24(x^2-y^2)+16(x-y)^2
=> 9(x^2+2xy+y^2)-24x^2+24y^2+16(x^2-2xy+y^2)
=> 9x^2+18xy+9y^2-24x^2+24y^2+16x^2-32xy+16y^2
=> (9x^2+16x^2-24x^2)+(18xy-32xy) + ( 9y^2+24y^2+16y^2)
=> (25x^2-24y^2)+(18xy-32xy) +(33y^2+16y^2)
=> x^2 +(-14xy)+ 49y^2
=> x^2-14xy+49y^2
=> (x)^2-2(x)(7y)+(7y)^2
Since (a-b)^2 = a^2-2ab+b^2
=>(x-7y)^2
=> (x-7y)(x-7y)
9(x+y)^2-24(x^2-y^2)+16(x-y)^2
= (x-7y)(x-7y)
Used formulae:-
- a^3 - b^3 = (a-b)(a^2+ab+b^2)
- (a-b)^2 = a^2-2ab+b^2
- (a+b)^2=a^2+2ab+b^2
- (a+b)(a-b)=a^2-b^2