Math, asked by shydude07, 4 months ago

Help me please it's urgent

Attachments:

Answers

Answered by AestheticSky
12

\huge\bf{\red{\underline{\underline{\mathcal{AnSwer}}}}}

Given:-

  • Rear view mirror i.e it is a convex mirror
  • Radius of curvature ( C ) = 3 m
  • object distance ( u ) = -5 m

To find:-

  • image distance ( v )
  • nature of image
  • size of image

Formula:-

\implies \underline{\boxed{\sf \dfrac{1}{f} = \dfrac{1}{v} + \dfrac{1}{u}}}

\implies \underline{\boxed{\sf m = \dfrac{-v}{u}}}

Solution:-

\implies \sf\dfrac{1}{3} = \sf\dfrac{1}{v} + \sf\dfrac{1}{-5}

\implies \sf\dfrac{1}{v} = \sf\dfrac{1}{3} + \sf\dfrac{1}{5}

\implies \sf\dfrac{1}{v} = \sf\dfrac{3+5}{15}

\implies \sf\dfrac{1}{v} = \sf\dfrac{8}{15}

\implies \sf v = \sf 1.25

Nature:- The positive sign of this image shows that it is Virtual and erect image.

Size of this image

\implies m = \sf\dfrac{-1.25}{-5}

\implies m = 0.25

hence, this image is smaller than the object

_________________________

Additional information:-

Cases in Concave mirror -

\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\boxed{\begin{array}{cccc}\sf \pink{Position_{\:(object)}} &\sf \purple{Position_{\:(image)}} &\sf \red{Size_{\:(image)}} &\sf \blue{Nature_{\:(image)}}\\\frac{\qquad \qquad \qquad \qquad}{}&\frac{\qquad \qquad \qquad \qquad}{}&\frac{\qquad \qquad \qquad \qquad\qquad}{}&\frac{\qquad \qquad \qquad \qquad\qquad}{}\\\sf At \:Infinity &\sf At\: F&\sf Highly\:Diminished&\sf Real\:and\:Inverted\\\\\sf Beyond\:C &\sf Between\:F\:and\:C&\sf Diminished&\sf Real\:and\:Inverted\\\\\sf At\:C &\sf At\:C&\sf Same\:Size&\sf Real\:and\:Inverted\\\\\sf Between\:C\:and\:F&\sf Beyond\:C&\sf Enlarged&\sf Real\:and\;Inverted\\\\\sf At\:F&\sf At\:Infinity&\sf Highly\: Enlarged&\sf Real\:and\:Inverted\\\\\sf Between\:F\:and\:P&\sf \: Behind\:the\:mirror&\sf Enlarged&\sf \: Erect\:and\:Virtual\end{array}}\end{gathered}\end{gathered}\end{gathered}\end{gathered}

Answered by gargivy1510
2

Answer:

ɢɪᴠᴇɴ:-

ʀᴇᴀʀ ᴠɪᴇᴡ ᴍɪʀʀᴏʀ ɪ.ᴇ ɪᴛ ɪs ᴀ ᴄᴏɴᴠᴇx ᴍɪʀʀᴏʀ

ʀᴀᴅɪᴜs ᴏғ ᴄᴜʀᴠᴀᴛᴜʀᴇ ( ᴄ ) = 3 ᴍ

ᴏʙᴊᴇᴄᴛ ᴅɪsᴛᴀɴᴄᴇ ( ᴜ ) = -5 ᴍ

ᴛᴏ ғɪɴᴅ:-

ɪᴍᴀɢᴇ ᴅɪsᴛᴀɴᴄᴇ ( ᴠ )

ɴᴀᴛᴜʀᴇ ᴏғ ɪᴍᴀɢᴇ

sɪᴢᴇ ᴏғ ɪᴍᴀɢᴇ

ғᴏʀᴍᴜʟᴀ:-

\ɪᴍᴘʟɪᴇs⟹ \ᴜɴᴅᴇʀʟɪɴᴇ{\ʙᴏxᴇᴅ{\sғ \ᴅғʀᴀᴄ{1}{ғ} = \ᴅғʀᴀᴄ{1}{ᴠ} + \ᴅғʀᴀᴄ{1}{ᴜ}}}

ғ

1

=

1

+

1

\ɪᴍᴘʟɪᴇs⟹ \ᴜɴᴅᴇʀʟɪɴᴇ{\ʙᴏxᴇᴅ{\sғ ᴍ = \ᴅғʀᴀᴄ{-ᴠ}{ᴜ}}}

ᴍ=

−ᴠ

sᴏʟᴜᴛɪᴏɴ:-

\ɪᴍᴘʟɪᴇs⟹ \sғ\ᴅғʀᴀᴄ{1}{3}

3

1

= \sғ\ᴅғʀᴀᴄ{1}{ᴠ}

1

+ \sғ\ᴅғʀᴀᴄ{1}{-5}

−5

1

\ɪᴍᴘʟɪᴇs⟹ \sғ\ᴅғʀᴀᴄ{1}{ᴠ}

1

= \sғ\ᴅғʀᴀᴄ{1}{3}

3

1

+ \sғ\ᴅғʀᴀᴄ{1}{5}

5

1

\ɪᴍᴘʟɪᴇs⟹ \sғ\ᴅғʀᴀᴄ{1}{ᴠ}

1

= \sғ\ᴅғʀᴀᴄ{3+5}{15}

15

3+5

\ɪᴍᴘʟɪᴇs⟹ \sғ\ᴅғʀᴀᴄ{1}{ᴠ}

1

= \sғ\ᴅғʀᴀᴄ{8}{15}

15

8

\ɪᴍᴘʟɪᴇs⟹ \sғ ᴠᴠ = \sғ 1.251.25

ɴᴀᴛᴜʀᴇ:- ᴛʜᴇ ᴘᴏsɪᴛɪᴠᴇ sɪɢɴ ᴏғ ᴛʜɪs ɪᴍᴀɢᴇ sʜᴏᴡs ᴛʜᴀᴛ ɪᴛ ɪs ᴠɪʀᴛᴜᴀʟ ᴀɴᴅ ᴇʀᴇᴄᴛ ɪᴍᴀɢᴇ.

sɪᴢᴇ ᴏғ ᴛʜɪs ɪᴍᴀɢᴇ

\ɪᴍᴘʟɪᴇs⟹ ᴍ = \sғ\ᴅғʀᴀᴄ{-1.25}{-5}

−5

−1.25

\ɪᴍᴘʟɪᴇs⟹ ᴍ = 0.25

ʜᴇɴᴄᴇ, ᴛʜɪs ɪᴍᴀɢᴇ ɪs sᴍᴀʟʟᴇʀ ᴛʜᴀɴ ᴛʜᴇ ᴏʙᴊᴇᴄᴛ

_________________________

ᴀᴅᴅɪᴛɪᴏɴᴀʟ ɪɴғᴏʀᴍᴀᴛɪᴏɴ:-

ᴄᴀsᴇs ɪɴ ᴄᴏɴᴄᴀᴠᴇ ᴍɪʀʀᴏʀ -

\ʙᴇɢɪɴ{ɢᴀᴛʜᴇʀᴇᴅ}\ʙᴇɢɪɴ{ɢᴀᴛʜᴇʀᴇᴅ}\ʙᴇɢɪɴ{ɢᴀᴛʜᴇʀᴇᴅ}\ʙᴇɢɪɴ{ɢᴀᴛʜᴇʀᴇᴅ}\ʙᴇɢɪɴ{ɢᴀᴛʜᴇʀᴇᴅ}\ʙᴏxᴇᴅ{\ʙᴇɢɪɴ{ᴀʀʀᴀʏ}{ᴄᴄᴄᴄ}\sғ \ᴘɪɴᴋ{ᴘᴏsɪᴛɪᴏɴ_{\:(ᴏʙᴊᴇᴄᴛ)}} &\sғ \ᴘᴜʀᴘʟᴇ{ᴘᴏsɪᴛɪᴏɴ_{\:(ɪᴍᴀɢᴇ)}} &\sғ \ʀᴇᴅ{sɪᴢᴇ_{\:(ɪᴍᴀɢᴇ)}} &\sғ \ʙʟᴜᴇ{ɴᴀᴛᴜʀᴇ_{\:(ɪᴍᴀɢᴇ)}}\\\ғʀᴀᴄ{\ǫǫᴜᴀᴅ \ǫǫᴜᴀᴅ \ǫǫᴜᴀᴅ \ǫǫᴜᴀᴅ}{}&\ғʀᴀᴄ{\ǫǫᴜᴀᴅ \ǫǫᴜᴀᴅ \ǫǫᴜᴀᴅ \ǫǫᴜᴀᴅ}{}&\ғʀᴀᴄ{\ǫǫᴜᴀᴅ \ǫǫᴜᴀᴅ \ǫǫᴜᴀᴅ \ǫǫᴜᴀᴅ\ǫǫᴜᴀᴅ}{}&\ғʀᴀᴄ{\ǫǫᴜᴀᴅ \ǫǫᴜᴀᴅ \ǫǫᴜᴀᴅ \ǫǫᴜᴀᴅ\ǫǫᴜᴀᴅ}{}\\\sғ ᴀᴛ \:ɪɴғɪɴɪᴛʏ &\sғ ᴀᴛ\: ғ&\sғ ʜɪɢʜʟʏ\:ᴅɪᴍɪɴɪsʜᴇᴅ&\sғ ʀᴇᴀʟ\:ᴀɴᴅ\:ɪɴᴠᴇʀᴛᴇᴅ\\\\\sғ ʙᴇʏᴏɴᴅ\:ᴄ &\sғ ʙᴇᴛᴡᴇᴇɴ\:ғ\:ᴀɴᴅ\:ᴄ&\sғ ᴅɪᴍɪɴɪsʜᴇᴅ&\sғ ʀᴇᴀʟ\:ᴀɴᴅ\:ɪɴᴠᴇʀᴛᴇᴅ\\\\\sғ ᴀᴛ\:ᴄ &\sғ ᴀᴛ\:ᴄ&\sғ sᴀᴍᴇ\:sɪᴢᴇ&\sғ ʀᴇᴀʟ\:ᴀɴᴅ\:ɪɴᴠᴇʀᴛᴇᴅ\\\\\sғ ʙᴇᴛᴡᴇᴇɴ\:ᴄ\:ᴀɴᴅ\:ғ&\sғ ʙᴇʏᴏɴᴅ\:ᴄ&\sғ ᴇɴʟᴀʀɢᴇᴅ&\sғ ʀᴇᴀʟ\:ᴀɴᴅ\;ɪɴᴠᴇʀᴛᴇᴅ\\\\\sғ ᴀᴛ\:ғ&\sғ ᴀᴛ\:ɪɴғɪɴɪᴛʏ&\sғ ʜɪɢʜʟʏ\: ᴇɴʟᴀʀɢᴇᴅ&\sғ ʀᴇᴀʟ\:ᴀɴᴅ\:ɪɴᴠᴇʀᴛᴇᴅ\\\\\sғ ʙᴇᴛᴡᴇᴇɴ\:ғ\:ᴀɴᴅ\:ᴘ&\sғ \: ʙᴇʜɪɴᴅ\:ᴛʜᴇ\:ᴍɪʀʀᴏʀ&\sғ ᴇɴʟᴀʀɢᴇᴅ&\sғ \: ᴇʀᴇᴄᴛ\:ᴀɴᴅ\:ᴠɪʀᴛᴜᴀʟ\ᴇɴᴅ{ᴀʀʀᴀʏ}}\ᴇɴᴅ{ɢᴀᴛʜᴇʀᴇᴅ}\ᴇɴᴅ{ɢᴀᴛʜᴇʀᴇᴅ}\ᴇɴᴅ{ɢᴀᴛʜᴇʀᴇᴅ}\ᴇɴᴅ{ɢᴀᴛʜᴇʀᴇᴅ}\ᴇɴᴅ{ɢᴀᴛʜᴇʀᴇᴅ}

ᴘᴏsɪᴛɪᴏɴ

(ᴏʙᴊᴇᴄᴛ)

ᴀᴛɪɴғɪɴɪᴛʏ

ʙᴇʏᴏɴᴅᴄ

ᴀᴛᴄ

ʙᴇᴛᴡᴇᴇɴᴄᴀɴᴅғ

ᴀᴛғ

ʙᴇᴛᴡᴇᴇɴғᴀɴᴅᴘ

ᴘᴏsɪᴛɪᴏɴ

(ɪᴍᴀɢᴇ)

ᴀᴛғ

ʙᴇᴛᴡᴇᴇɴғᴀɴᴅᴄ

ᴀᴛᴄ

ʙᴇʏᴏɴᴅᴄ

ᴀᴛɪɴғɪɴɪᴛʏ

ʙᴇʜɪɴᴅᴛʜᴇᴍɪʀʀᴏʀ

sɪᴢᴇ

(ɪᴍᴀɢᴇ)

ʜɪɢʜʟʏᴅɪᴍɪɴɪsʜᴇᴅ

ᴅɪᴍɪɴɪsʜᴇᴅ

sᴀᴍᴇsɪᴢᴇ

ᴇɴʟᴀʀɢᴇᴅ

ʜɪɢʜʟʏᴇɴʟᴀʀɢᴇᴅ

ᴇɴʟᴀʀɢᴇᴅ

ɴᴀᴛᴜʀᴇ

(ɪᴍᴀɢᴇ)

ʀᴇᴀʟᴀɴᴅɪɴᴠᴇʀᴛᴇᴅ

ʀᴇᴀʟᴀɴᴅɪɴᴠᴇʀᴛᴇᴅ

ʀᴇᴀʟᴀɴᴅɪɴᴠᴇʀᴛᴇᴅ

ʀᴇᴀʟᴀɴᴅɪɴᴠᴇʀᴛᴇᴅ

ʀᴇᴀʟᴀɴᴅɪɴᴠᴇʀᴛᴇᴅ

ᴇʀᴇᴄᴛᴀɴᴅᴠɪʀᴛᴜᴀʟ

Similar questions