Math, asked by pankhudiv, 30 days ago

Help me please with this question.​

Attachments:

Answers

Answered by mathdude500
2

\large\underline{\sf{To\:Prove - }}

\rm :\longmapsto\:\dfrac{1}{sec\theta  - tan\theta }  + \dfrac{1}{sec\theta  + tan\theta }  = 2sec\theta

\begin{gathered}\Large{\bold{{\underline{Formula \: Used - }}}}  \end{gathered}

\rm :\longmapsto\:(x + y)(x - y) =  {x}^{2}  -  {y}^{2}

\rm :\longmapsto\: {sec}^{2}\theta  -  {tan}^{2} \theta  = 1

\large\underline{\sf{Solution-}}

Consider, LHS

\rm :\longmapsto\:\dfrac{1}{sec\theta  - tan\theta }  + \dfrac{1}{sec\theta  + tan\theta }

\rm \:  =  \:  \: \dfrac{sec\theta  + tan\theta  + sec\theta  - tan\theta }{(sec\theta  - tan\theta )(sec\theta  + tan\theta )}

\rm \:  =  \:  \: \dfrac{2sec\theta }{ {sec}^{2} \theta  -  {tan}^{2} \theta }

\rm \:  =  \:  \: \dfrac{2sec\theta }{1}

\rm \:  =  \:  \: 2sec\theta

Hence,

\rm :\longmapsto\:\dfrac{1}{sec\theta  - tan\theta }  + \dfrac{1}{sec\theta  + tan\theta }  = 2sec\theta

Additional Information :-

Let's solve one more problem of same type!!

To prove :-

\rm :\longmapsto\:\dfrac{1}{1 - sin\theta }  + \dfrac{1}{1 + sin\theta }  = 2 {sec}^{2}\theta

Identities Used :-

\rm :\longmapsto\:(x + y)(x - y) =  {x}^{2}  -  {y}^{2}

\rm :\longmapsto\: {sin}^{2}\theta  +  {cos}^{2}\theta  = 1

Solution :-

Consider LHS

\rm :\longmapsto\:\dfrac{1}{1 - sin\theta }  + \dfrac{1}{1 + sin\theta }

\rm \:  =  \:  \: \dfrac{1 + sin\theta  + 1 - sin\theta }{(1 - sin\theta )(1 + sin\theta )}

\rm \:  =  \:  \: \dfrac{2}{1 -  {sin}^{2}\theta  }

\rm \:  =  \:  \: \dfrac{2}{{cos}^{2}\theta  }

\rm \:  =  \:  \:  {2sec}^{2} \theta

Hence,

\rm :\longmapsto\:\dfrac{1}{1 - sin\theta }  + \dfrac{1}{1 + sin\theta }  = 2 {sec}^{2}\theta

Let's solve one more problem now!!

To prove :-

\rm :\longmapsto\: \sqrt{\bigg(\dfrac{cosec\theta  + 1}{cosec\theta  - 1} \bigg) }  -  \sqrt{\bigg(\dfrac{cosec\theta  - 1}{cosec\theta  + 1} \bigg) }

Identities Used :-

\rm :\longmapsto\: {cosec}^{2}\theta  -  {cot}^{2}\theta  = 1

\rm :\longmapsto\:cot\theta  =  \dfrac{1}{tan\theta }

Solution :-

\rm :\longmapsto\: \sqrt{\bigg(\dfrac{cosec\theta  + 1}{cosec\theta  - 1} \bigg) }  -  \sqrt{\bigg(\dfrac{cosec\theta  - 1}{cosec\theta  + 1} \bigg) }  = 2tan\theta

\rm \:  =  \:  \: \dfrac{cosec\theta  + 1 - (cosec\theta  - 1)}{ \sqrt{(cosec\theta  - 1)(cosec\theta  + 1)} }

\rm \:  =  \:  \: \dfrac{cosec\theta  + 1 - cosec\theta  + 1}{ \sqrt{ {cosec}^{2} \theta  -  {(1)}^{2} } }

\rm \:  =  \:  \: \dfrac{2}{ \sqrt{ {cosec}^{2} \theta  - 1} }

\rm \:  =  \:  \: \dfrac{2}{ \sqrt{ {cot}^{2} \theta} }

\rm \:  =  \:  \: \dfrac{2}{cot\theta }

\rm \:  =  \:  \: 2tan\theta

Hence,

\rm :\longmapsto\: \sqrt{\bigg(\dfrac{cosec\theta  + 1}{cosec\theta  - 1} \bigg) }  -  \sqrt{\bigg(\dfrac{cosec\theta  - 1}{cosec\theta  + 1} \bigg) }  = 2tan\theta

Similar questions