Math, asked by helpmeplsssss, 11 months ago

help me pls refer the picture attached for question please send solution and answer​

Attachments:

Answers

Answered by Anonymous
1

2 c0s 65 / sin ( 90_65) _ tan 20 / cot 30 _ sin 90

2cos 65/ cos 65 _ tan 20 / cot30 _ sin 90

2 _ tan20 / cot 30 _ sin 90 ...

ab answer k according tan cot ko sin cos mai break kro aur simple calculation sai answer pavo ....

Answered by Abhishek474241
0

Correct Question

  • \tt\dfrac{2cos65}{sin25}-\dfrac{Tan50}{Cot30}-sin90

AnSwEr

{\tt{\red{\underline{\large{Given}}}}}

  • \tt\dfrac{2cos65}{sin25}-\dfrac{Tan50}{Cot30}-sin90

{\sf{\green{\underline{\large{To\:find}}}}}

  • Value of this trignometic

{\sf{\pink{\underline{\Large{Explanation}}}}}

  • We find the value
  • By help of complementary angle

\tt\dfrac{2cos65}{sin25}-\dfrac{Tan50}{Cot30}-sin90

  • We know that
  • cos(90-∅) = sin∅
  • and Tan(90-∅) = cot∅

\pink\rule{200}3

\implies\tt\dfrac{2cos(90-25)}{sin25}-\dfrac{Tan(90-50)}{Cot30}-sin90

\implies\tt\dfrac{2sin(25)}{sin25}-\dfrac{Cot(50)}{Cot30}-sin90

\implies\tt\cancel{\dfrac{2sin(25)}{sin25}}-\cancel{\dfrac{Cot(50)}{Cot30}}-sin90

=>2-1+1

=>2

\red\rule{200}3

Hence value is 2

Similar questions