Math, asked by clenn1734018, 16 days ago

HELP ME PLSSSSSSSSSSSS

Attachments:

Answers

Answered by Anonymous
20

Answer:

\large{\underline{\underline{\bf{\purple{Question \:  : - }}}}}

\begin{gathered}\\ \dashrightarrow{\sf{3\dfrac{1}{5}} + 75\% - {1\dfrac{3}{10}}} \end{gathered}

\begin{gathered}\end{gathered}

\large{\underline{\underline{\bf{\purple{Solution\:  : - }}}}}

\begin{gathered}\\  \dashrightarrow{\sf{3\dfrac{1}{5}} + 75\% - {1\dfrac{3}{10}}} \\  \end{gathered}

\red \divideontimes Firstly, converting mixed fractions into improper fraction.

\begin{gathered} \\  {\dashrightarrow{\sf{\dfrac{(3 \times 5) + 1}{5}} + 75\% - {\dfrac{(1 \times 10) + 3}{10}}}} \\ \end{gathered}

\begin{gathered}{\dashrightarrow{\sf{\dfrac{15 + 1}{5}} + 75\% - {\dfrac{10 + 3}{10}}}} \\ \end{gathered}

\begin{gathered}{\dashrightarrow{\sf{\dfrac{16}{5}} + 75\% - {\dfrac{13}{10}}}} \\ \end{gathered}

\red \divideontimes As we know that, 1% = 1/100, then converting 75% into improper fraction.

\begin{gathered}\\{\dashrightarrow{\sf{\dfrac{16}{5}} +  \dfrac{75}{100}  - {\dfrac{13}{10}}}} \\  \end{gathered}

\red \divideontimes According to the BODMAS, Firstly we will perform the addition.

\begin{gathered}\\{\dashrightarrow{\sf{\bigg(\dfrac{16}{5}} +  \dfrac{75}{100} \bigg)  - {\dfrac{13}{10}}}} \\ \end{gathered}

\red \divideontimes Taking the LCM of denominators.

\begin{gathered}\\{\dashrightarrow{\sf{\bigg(\dfrac{(16 \times 20) + (75 \times 1)}{100}} \bigg)  - {\dfrac{13}{10}}}} \\ \end{gathered}

\begin{gathered}{\dashrightarrow{\sf{\bigg(\dfrac{320 + 75 }{100}} \bigg)  - {\dfrac{13}{10}}}} \\ \end{gathered}

\begin{gathered}{\dashrightarrow{\sf{\bigg(\dfrac{395 }{100}} \bigg)  - {\dfrac{13}{10}}}} \\ \end{gathered}

\red \divideontimes Now, converting 395/100 in simplest form.

\begin{gathered}\\  {\dashrightarrow{\sf{\bigg( \cancel{\dfrac{395 }{100}}} \bigg)  - {\dfrac{13}{10}}}} \\ \end{gathered}

\begin{gathered}{\dashrightarrow{\sf{\bigg(\dfrac{79}{20}} \bigg)  - {\dfrac{13}{10}}}} \\ \end{gathered}

\red \divideontimes Now, performing subtraction, according to BODMAS.

\begin{gathered}\\  {\dashrightarrow{\sf{\dfrac{79}{20}}   - {\dfrac{13}{10}}}} \\ \end{gathered}

\red \divideontimes Again, taking LCM of denominators.

\begin{gathered}\\  {\dashrightarrow{\sf{\dfrac{(79 \times 1) - (13 \times 2)}{20}}}} \\ \end{gathered}

\begin{gathered}{\dashrightarrow{\sf{\dfrac{79 -26}{20}}}}  \\ \end{gathered}

\begin{gathered}{\dashrightarrow{\sf{\dfrac{53}{20}}}} \\  \end{gathered}

\begin{gathered}\red{\bigstar{\underline{\boxed{\bf{Answer = \dfrac{53}{20}}}}}}\end{gathered}

The answer is 53/20.

\begin{gathered}\end{gathered}

\large{\underline{\underline{\bf{\purple{Learn \: More\:  : - }}}}}

\underline{\underline{\pmb{\mathbb{\red{BODMAS \: :}}}}}

BODMAS rule is an acronym used to remember the order of operations to be followed while solving expressions in mathematics.

It stands for :-

  • ↠ B - Brackets,
  • ↠ O - Order of powers or roots,
  • ↠ D - Division,
  • ↠ M - Multiplication 
  • ↠ A - Addition,
  • ↠ S - Subtraction.

It means that expressions having multiple operators need to be simplified from left to right in this order only.

\rule{200}2

\underline{\underline{\pmb{\mathbb{\red{BODMAS \:  RULE \: :}}}}}

First, we solve brackets, then powers or roots, then division or multiplication (whatever comes first from the left side of the expression), and then at last subtraction or addition.

  • ↠ Addition (+)
  • ↠ Subtraction (-)
  • ↠ Multiplication (×)
  • ↠ Division (÷)
  • ↠ Brackets ( )

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Similar questions