Math, asked by vedantpansare2005, 9 months ago

help me plz l will mark you brainliest​

Attachments:

Answers

Answered by uditverma7777
1

plzzz ma4k ot as brainlist

Attachments:
Answered by pulakmath007
19

\displaystyle\huge\red{\underline{\underline{Solution}}}

FORMULA TO BE IMPLEMENTED

  \sf{\displaystyle \:  \tan \theta =  \frac{ \sin \theta}{ \cos \theta} }

GIVEN

  \sf{\displaystyle \:  \tan \theta =  \frac{1}{2} }

TO DETERMINE

  \sf{\displaystyle \:  \:  \frac{2\sin \theta + 3 \cos \theta}{4\cos \theta  +  \: 3\sin \theta  }   }

EVALUATION

  \sf{\displaystyle \:  \:  \frac{2\sin \theta + 3 \cos \theta}{4\cos \theta  +  \: 3\sin \theta  }   }

Dividing numerator and denominator both by

\cos \theta

We get

  =  \sf{\displaystyle \:  \:  \frac{2 \times  \frac{\sin \theta}{\cos \theta}  + 3 }{4  +  \: 3 \times \frac{\sin \theta}{\cos \theta}  }   }

 =   \sf{\displaystyle \:  \:  \frac{2\tan \theta + 3}{4  +  \: 3\tan \theta  }   }

 =   \sf{\displaystyle \:  \:  \frac{2 \times  \frac{1}{2} + 3}{4  +  \: 3 \times  \frac{1}{2}   }   }

 =   \sf{\displaystyle \:  \:  \frac{1+ 3}{4  +    \frac{3}{2}   }   }

 =   \sf{\displaystyle \:  \:  \frac{4}{     \frac{8 + 3}{2}   }   }

 =   \sf{\displaystyle \:  \:  \frac{8}{ 11 }   }

Similar questions