Math, asked by brahmngirl57, 10 months ago

help me plzzz and give its correct answer plzz.​

Attachments:

Answers

Answered by ganapathijami
0

Step-by-step explanation:

u just need to understand the geometric progressions

Attachments:
Answered by Cynefin
18

✰Answer✰

Given:

 \large{ \sf{ \bullet{ \:  \:  \:  {2}^{a} =  {5}^{b}   =  {10}^{c} }}}

To prove:

 \large{ \sf{ \bullet{ \:  \:  \:  \frac{1}{a}  +  \frac{1}{b}  =  \frac{1}{c} }}}

Proof

 \red{ \tt{Let \:  {2}^{a}  =  {5}^{b} =  {10}^{c} = k }}

Now let see individually,

 \large{ \sf{ \rightarrow \:  {2}^{a}  = k}} \\  \\  \large{ \sf{ \rightarrow \: 2 =  {k}^{ \frac{1}{a}} .........(1)}}

━━━━━━━━━━━━

 \large{ \sf{ \rightarrow \:  {5}^{b}  = k}} \\  \\  \large{ \sf{ \rightarrow \: 5 =  {k}^{ \frac{1}{b} } .......(2)}}

━━━━━━━━━━━━

 \large{ \sf{ \rightarrow \:  {10}^{c}  = k}} \\  \\  \large{ \sf{ \rightarrow \: 10 =  {k}^{ \frac{1}{c} }.......(3) }}

━━━━━━━━━━━━

Now multiplying Equation 1 and 2 ,

\rightarrow \tt{2 \times 5 = 10 }

\rightarrow \tt{{(K)}^{ \frac{1}{a}} + {(K)}^{ \frac{1}{b}} = {(K)}^{ \frac{1}{c}}}

\green{\tt{\underline{\underline{from \: equatin(3)}}}}

\rightarrow \tt{{(K)}^{ \frac{1}{a} + \frac{1}{b}} = {(K)}^{ \frac{1}{c}}}

\green{\tt{\underline{\underline{by \:\:using \:\: ({a}^{x}\times {a}^{y}={a}^{x+y})}}}}

\rightarrow \red{\boxed{\tt{ \frac{1}{a} +  \frac{1}{b}=\frac{1}{c} }}}

\therefore \tt{hence\: proved}

Similar questions