Math, asked by MissPhenomenal, 5 months ago

Help me :-

⭐ Refer attachment .
• Do only (iv) subdivision

No spam , No copy ❌
need well explained answer ✅​

Attachments:

Answers

Answered by jenilynhas
1

Answer:

Drinking 8 glasses of water a day is good for your health, If each glass of water

is equivalent to 148 mL, how many liters of water you need to consume

everyday.

Answered by IdyllicAurora
38

Concept :-

Here the concept of Factor Theorem has been used. We see that we are given some polynomials and we have to check that if a given term is their factor or not. We can use remainder theorem for solving it which is the easiest way. In remainder theorem, firstly we take out the value of x from the divisor. Then we apply that value in the dividend to check if they are divisible by divisor or not if after application of value of x in dividend comes out to be zero.

Let's do it !!

______________________________________

Solution :-

Given,

» Divisor = g(x) = x + 1

» Dividend = p(x)

By Factor Theorem, we know that

→ g(x) = 0

→ x + 1 = 0

→ x = -1

And we also know that, a expression is polynomial is the factor of g(x) when after application of the value of x in p(x) should be equal to 0.

_____________________________

i.) x³ + x² + 1

\;\sf{\rightarrow\;\;\pink{p(x)\;=\;\bf{x^{3}\;+\;x^{2}\;+\;1}}}

By using Factor Theorem and applying value of x, we get

\;\sf{\rightarrow\;\;p(-1)\;=\;\bf{(-1)^{3}\;+\;(-1)^{2}\;+\;1}}

\;\sf{\rightarrow\;\;p(-1)\;=\;\bf{(-1)(-1)(-1)\;+\;(-1)(-1)\;+\;1}}

\;\sf{\rightarrow\;\;p(-1)\;=\;\bf{-1\;+\;1\;+\;1}}

\;\sf{\rightarrow\;\;p(-1)\;=\;\bf{-1\;+\;2}}

\;\sf{\rightarrow\;\;p(-1)\;=\;\bf{-1\;+\;2}}

\;\bf{\rightarrow\;\;\pink{p(-1)\;=\;\bf{1}}}

Here, p(x) = 1 and 1 ≠ 0.

Clearly, p(x) 0

This means (x + 1) is not the factor of this polynomial.

\;\underline{\boxed{\tt{\purple{Hence,\;\:(x\:+\:1)\;is\;\:not\;\:the\;\:factor\;\:of\;\:this\;\:polynomial}}}}

_____________________________

ii) x + x³ + x² + x + 1

\;\sf{\rightarrow\;\;\blue{p(x)\;=\;\bf{x^{4}\;+\;x^{3}\;+\;x^{2}\;+\;x\;+\;1}}}

By using Factor Theorem and applying the value of x, we get

\;\sf{\rightarrow\;\;p(-1)\;=\;\bf{(-1)^{4}\;+\;(-1)^{3}\;+\;(-1)^{2}\;+\;(-1)\;+\;1}}

\;\sf{\rightarrow\;\;p(-1)\;=\;\bf{(-1)(-1)(-1)(-1)\;+\;(-1)(-1)(-1)\;+\;(-1)(-1)\;+\;(-1)\;+\;1}}

\;\sf{\rightarrow\;\;p(-1)\;=\;\bf{1\;-\;1\;+\;1\;-\;1\;+\;1}}

\;\sf{\rightarrow\;\;p(-1)\;=\;\bf{-\:2\;+\;3}}

\;\bf{\rightarrow\;\;\blue{p(-1)\;=\;\bf{1}}}

Here, p(x) = 1 and 1 ≠ 0

Clearly, p(x) ≠ 0

This means (x + 1) is not the factor of this polynomial.

\;\underline{\boxed{\tt{\purple{Hence,\;\:(x\:+\:1)\;is\;\:not\;\:the\;\:factor\;\:of\;\:this\;\:polynomial}}}}

______________________________

iii) x + 3x³ + 3x² + x + 1

\;\sf{\rightarrow\;\;\red{p(x)\;=\;\bf{x^{4}\;+\;3x^{3}\;+\;3x^{2}\;+\;x\;+\;1}}}

By using Factor Theorem and applying the value of x, we get

\;\sf{\rightarrow\;\;p(-1)\;=\;\bf{(-1)^{4}\;+\;3(-1)^{3}\;+\;3(-1)^{2}\;+\;(-1)\;+\;1}}

\;\sf{\rightarrow\;\;p(-1)\;=\;\bf{(-1)(-1)(-1)(-1)\;+\;3(-1)(-1)(-1)\;+\;3(-1)(-1)\;+\;(-1)\;+\;1}}

\;\sf{\rightarrow\;\;p(-1)\;=\;\bf{1\;-\;3\;+\;3\;-\;1\;+\;1}}

\;\sf{\rightarrow\;\;p(-1)\;=\;\bf{-\:1\;+\;2}}

\;\bf{\rightarrow\;\;\red{p(-1)\;=\;\bf{1}}}

Here p(x) = 1 and 1 ≠ 0

Clearly, p(x) 0

This means (x + 1) is not the factor of this polynomial.

\;\underline{\boxed{\tt{\purple{Hence,\;\:(x\:+\:1)\;is\;\:not\;\:the\;\:factor\;\:of\;\:this\;\:polynomial}}}}

______________________________

iv) x³ - x² - (2 + (-2))x + 2

\;\sf{\rightarrow\;\;\green{p(x)\;=\;\bf{x^{3}\;-\;x^{2}\;-\;(2\;+\;(-\sqrt{2}))x\;+\;\sqrt{2}}}}

By using Factor Theorem and applying the value of x, we get

\;\sf{\rightarrow\;\;p(-1)\;=\;\bf{(-1)^{3}\;-\;(-1)^{2}\;-\;(2\;-\;\sqrt{2})(-1)\;+\;\sqrt{2}}}

\;\sf{\rightarrow\;\;p(-1)\;=\;\bf{(-1)(-1)(-1)\;-\;(-1)(-1)\;-\;(-2\;+\;\sqrt{2})\;+\;\sqrt{2}}}

\;\sf{\rightarrow\;\;p(-1)\;=\;\bf{-\:1\;-\;(1)\;+\;2\;-\;\sqrt{2}\;+\;\sqrt{2}}}

\;\sf{\rightarrow\;\;p(-1)\;=\;\bf{-\:1\;-\;1\;+\;2\;-\;\sqrt{2}\;+\;\sqrt{2}}}

\;\sf{\rightarrow\;\;p(-1)\;=\;\bf{-\:2\;+\;2\;-\;\sqrt{2}\;+\;\sqrt{2}}}

\;\bf{\rightarrow\;\;\green{p(-1)\;=\;\bf{0}}}

Here, p(x) = 0

Clearly, p(x) = 0

This means (x + 1) is the factor of this polynomial.

\;\underline{\boxed{\tt{\purple{Hence,\;\:(x\:+\:1)\;is\;\:the\;\:factor\;\:of\;\:this\;\:polynomial}}}}

____________________________________

More to know :-

Factor Theorem :: This theorem states that the polynomial p(x) which dividend results to 0 if the value of x is applied to it from the Divisor g(x) .

Remainder Theorem :: This states that if a polynomial p(x) is divided by another polynomial g(x) then, then the non zero value obtained after applying the value of x from g(x) to p(x) is remainder when p(x) is divided by g(x).

Similar questions