Chemistry, asked by Nikiselly, 10 months ago

help me solve this chemistry's maths..​

Attachments:

Answers

Answered by Sharad001
6

Question :-

A first order reaction takes 40 minutes for 20% decomposition . Calculate half life period .

Answer :-

\implies \boxed{ \sf{ \green{t_{ \frac{1}{2} }} = 124.19 \: minutes \: }}

To Find :-

→ Half life period

Explanation :-

For First order reaction -

 \to  \boxed{\sf{ t =  \red{ \frac{2.303}{k} } \green{  \log( \frac{a}{a - x} ) }}} \\  \\  \because \sf{decomposition \: 20\% \: out \: of \: 100\%} \\  \\  \leadsto \sf{t =  \red{ \frac{2.303}{k} } \green{  \log( \frac{100}{100 - 20} )}} \\  \\   \red{\leadsto }\sf{ t =  \frac{2.303}{k}    \log( \frac{10}{8} ) } \\  \because \sf{t = 40 \: min.} \\  \\  \leadsto \sf{40 = \orange{ \frac{2.303}{k} }( \log10 -  \log8)} \\  \\  \leadsto \sf{ 40 = \red{\frac{2.303}{k}}(1 - 3 \log2)} \\ \\  \leadsto \sf{ k =  \frac{2.303}{40} (1 - 3 \times 0.301)} \\  \\  \leadsto \sf{ k =  \frac{2.303}{40}  \times 0.97}

 \leadsto\boxed{\sf{k=0.00558 \:{min}^{ - 1}}}

Now we know that ; For half life period

 \implies  \pink{ \boxed{\sf{ \green{t_{ \frac{1}{2} }} =  \purple{ \frac{0.693}{k}}}}} \\  \\  \implies \sf{t_{ \frac{1}{2} } } =  \frac{0.693}{0.00558}  \\  \\   \implies \boxed{ \sf{ \green{t_{ \frac{1}{2} }} = 124.19 \: minutes \: }}

Answered by xXTheLegendXx
2

Answer:

Question :-

A first order reaction takes 40 minutes for 20% decomposition . Calculate half life period .

Answer :-

\implies \boxed{ \sf{ \green{t_{ \frac{1}{2} }} = 124.19 \: minutes \: }}

To Find :-

→ Half life period

Explanation :-

For First order reaction -

 \to  \boxed{\sf{ t =  \red{ \frac{2.303}{k} } \green{  \log( \frac{a}{a - x} ) }}} \\  \\  \because \sf{decomposition \: 20\% \: out \: of \: 100\%} \\  \\  \leadsto \sf{t =  \red{ \frac{2.303}{k} } \green{  \log( \frac{100}{100 - 20} )}} \\  \\   \red{\leadsto }\sf{ t =  \frac{2.303}{k}    \log( \frac{10}{8} ) } \\  \because \sf{t = 40 \: min.} \\  \\  \leadsto \sf{40 = \orange{ \frac{2.303}{k} }( \log10 -  \log8)} \\  \\  \leadsto \sf{ 40 = \red{\frac{2.303}{k}}(1 - 3 \log2)} \\ \\  \leadsto \sf{ k =  \frac{2.303}{40} (1 - 3 \times 0.301)} \\  \\  \leadsto \sf{ k =  \frac{2.303}{40}  \times 0.97}

 \leadsto\boxed{\sf{k=0.00558 \:{min}^{ - 1}}}

Now we know that ; For half life period

 \implies  \pink{ \boxed{\sf{ \green{t_{ \frac{1}{2} }} =  \purple{ \frac{0.693}{k}}}}} \\  \\  \implies \sf{t_{ \frac{1}{2} } } =  \frac{0.693}{0.00558}  \\  \\   \implies \boxed{ \sf{ \green{t_{ \frac{1}{2} }} = 124.19 \: minutes \: }}

Similar questions