Math, asked by kriti4226, 2 months ago

help me solve this from the chapter quadratic equations class 10th​

Attachments:

Answers

Answered by MathHacker001
7

Question :-

 \rm{ \sqrt{ \frac{x}{1 - x} } -  \sqrt{ \frac{1 - x}{x} }  =  \frac{3}{2}  } \\

Solution:-

\sf:\longmapsto{ \frac{( \sqrt{x} \times  \sqrt{x} ) - ( \sqrt{1 - x}  \times  \sqrt{1 - x} ) }{ \sqrt{ x(1 - x)}}  =  \frac{3}{2} } \\  \\ \sf:\longmapsto{ \frac{x - (1 - x)}{ \sqrt{ x(1 - x)}}  =  \frac{3}{2} } \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\  \\ \sf:\longmapsto{ \frac{x - 1 + x}{ \sqrt{ x(1 - x)}} =  \frac{3}{2}  } \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \\  \\ \sf:\longmapsto{ \frac{2x - 1}{ \sqrt{ x(1 - x)}} =  \frac{3}{2}  } \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\ \sf:\longmapsto{2(2x - 1) = 3 [\sqrt{x(1 - x)}]</p><p>} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \: \\   \\ \sf:\longmapsto{4x - 2 = 3 [\sqrt{x(1 - x)}]</p><p>} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \: \\

Squaring both sides

\sf:\longmapsto{4x {}^{2} - 4 = 9 [x (1 - x)]} \:  \:  \:  \:  \:  \:   \\  \\ \sf:\longmapsto{4x {}^{2}  - 4 =9(x - x {}^{2} ) } \: \:  \:  \:  \:  \:  \:   \:  \\  \\  \sf:\longmapsto{4x {}^{2}  - 4 = 9x - 9x {}^{2} } \: \:  \:  \:  \:  \:  \:   \:  \:  \\  \\  \sf:\longmapsto{9x {}^{2}  + 4x {}^{2}  - 9x - 4 = 0} \\  \\  \sf:\longmapsto{13x {}^{2}  - 9x - 4 = 0} \:  \:  \:  \:  \:  \:  \:  \:  \:

In Quadratic equation we easy to solve multiply a × c , where the general form of Quadratic equation is ax² + bx + c = 0.

 \sf:\longmapsto{x {}^{2} - 9x - 52 }

By splinting the middle term

 \sf:\longmapsto{x {}^{2} -   13x  + 4x - 52 = 0} \:  \:  \:  \:  \:  \\  \\  \sf:\longmapsto{x(x - 13) + 4(x - 13) = 0} \\  \\  \sf:\longmapsto{(x - 13)(x  + 4) = 0} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \sf:\longmapsto{x - 13 = 0} \\  \bf:\longmapsto \red{x = 13} \:  \:  \:  \:  \:  \:  \\  \\  \sf:\longmapsto{x + 4 = 0} \\  \bf:\longmapsto \red{x =  - 4} \:  \:  \:  \:

Answer :

  • x = 13
  • x = -4

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Answered by mathdude500
3

\large\underline{\sf{Given \:Question - }}

Solve for x :-

\rm :\longmapsto\: \sqrt{\dfrac{x}{1 - x} }  -  \sqrt{\dfrac{1 - x}{x} }  = \dfrac{3}{2}

\large\underline{\sf{Solution-}}

Given equation is

\rm :\longmapsto\: \sqrt{\dfrac{x}{1 - x} }  -  \sqrt{\dfrac{1 - x}{x} }  = \dfrac{3}{2}

Let we assume that,

\red{\rm :\longmapsto\: \sqrt{\dfrac{x}{1 - x} } = y -  -  -  - (1)}

So, given equation can be rewritten as

\rm :\longmapsto\:y - \dfrac{1}{y}  = \dfrac{3}{2}

\rm :\longmapsto\:\dfrac{ {y}^{2}  -1}{y}  = \dfrac{3}{2}

\rm :\longmapsto\:2( {y}^{2} - 1) = 3y

\rm :\longmapsto\:2{y}^{2} -2 = 3y

\rm :\longmapsto\:2{y}^{2} -2 - 3y = 0

\rm :\longmapsto\:2{y}^{2} - 3y - 2 = 0

\rm :\longmapsto\:2{y}^{2} - 4y + y - 2 = 0

\rm :\longmapsto\:2y(y - 2) + 1(y - 2) = 0

\rm :\longmapsto\:(y - 2)(2y + 1) = 0

\bf\implies \:y = 1 \:  \:  \: or \:  \:  \: y =  -  \: \dfrac{1}{2}

So, When

\rm :\longmapsto\:y = 1

\rm :\longmapsto\: \sqrt{\dfrac{x}{1 - x} }  = 1

On squaring both sides, we get

\rm :\longmapsto\:\dfrac{x}{1 - x}  = 1

\rm :\longmapsto\:x = 1 - x

\rm :\longmapsto\:x  + x= 1

\rm :\longmapsto\:2x= 1

\bf\implies \:x = \dfrac{1}{2}

Now, when

\rm :\longmapsto\:y =  -  \: \dfrac{1}{2}

\rm :\longmapsto\: \sqrt{\dfrac{x}{1 - x} }  =  - \dfrac{1}{2}

On squaring both sides, we get

\rm :\longmapsto\:\dfrac{x}{1 - x}  = \dfrac{1}{4}

\rm :\longmapsto\:4x = 1 - x

\rm :\longmapsto\:4x + x = 1

\rm :\longmapsto\:5x= 1

\bf\implies \:x = \dfrac{1}{5}

\begin{gathered}\begin{gathered}\bf\: \rm :\longmapsto\:Solution \: is \: -\begin{cases} &amp;\sf{x = \dfrac{1}{2} }  \\ \\ &amp;\sf{x = \dfrac{1}{5} } \end{cases}\end{gathered}\end{gathered}

Additional Information :-

Nature of roots :-

Let us consider a quadratic equation ax² + bx + c = 0, then nature of roots of quadratic equation depends upon Discriminant (D) of the quadratic equation.

If Discriminant, D > 0, then roots of the equation are real and unequal.

If Discriminant, D = 0, then roots of the equation are real and equal.

If Discriminant, D < 0, then roots of the equation are unreal or complex or imaginary.

Where,

Discriminant, D = b² - 4ac

Similar questions