Math, asked by samparai, 1 month ago

help me to do this sum​

Attachments:

Answers

Answered by MysticSohamS
2

Answer:

hey here is your answer

pls mark it as brainliest pls

Step-by-step explanation:

so \: here \: BX \: and \: CY \: are \: angle \: bisectors \: of \: ∠ABC \: and \: ∠ACB \: respectively \\ so \: hence \:  \\ ∠ABX = ∠CBX =  \frac{1}{2} ∠ABC \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: (1) \\  \: similarly \:  \: ∠ACY = ∠BCY =  \frac{1}{2} ∠ACB \:  \:  \:  \:  \:  \:  \:  \:  \:  (2)

so \: here \: AB = AC \\ so \: by \: isosceles \: triangle \: theorem \\ we \: get \\ ∠ABC = ∠ACB \:  \:  \:  \:  \:  \:  \:  \: (3) \\ so \: from \: (1) \: and \: (2) \\ we \: get \\ ∠ACY = ∠BCY = ∠ABX= ∠CBX \\ ie \: considering \: ∠ABX = ∠ACY \:  \:  \:  \:  \:  \:  \: (4)

now \: here \: as \: AB=AC \\ AB   \: and \: AC \: both \: are \: also \: chords \: of \: given \: circle \:  \\ so \: we \: know \: that \\ whenever \: chords \: are \: equal \: their \: corresponding \: arcs \: are \: equal \\ hence \: \:  then \\ m(arc \: AB)=m(arc \: AC) \:  \:  \:  \:  \:  \:  \:  \: (5)

so \: now \: here \\ ∠AXB  \: and  \: ∠AYC \: intercepts \: arc \: AB  \: and  \: AC \: repectively \: on \: circumference \: of \: circle \\ so \: by \: applying \: inscribed \: angle \: theorem \\ we \: get \\ ∠AXB =  \frac{1}{2} .m(arc \: AB) \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: (6) \\  \\ ∠AYC =  \frac{1}{2} .m(arc \: AC) \:  \:  \:  \:  \:  \:  \:  \:  \:  \: (7) \\  \\ so \: from \: (5) \: (6) \: and \: (7) \\ we \: get \\ ∠AYC = ∠AXB \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  (8)

now \: considering \:  \\ △AXB \: and \: △AYC \\ ∠ABX= ∠ ACY \:  \:  \:  \:  \:  \:  \:  \:  \:  \: from \: (4) \\ ∠AXB= ∠AYC \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: from \: (5) \\ thus \: then \:  \\ △AXB \: is \: similar \: to \: △AYC \:  \:  \:  \:  \:  \:  \:  \:  \:  \: (AA \: test \: of \: similarity) \\ hence \\  \frac{AB}{ AC }  =  \frac{BY}{  AX}  \:  \:  \:  \:  \:  \:  \: (c.s.s.t) \\ so \: as \: AB = AC \\ we \: get \\ 1 =  \frac{BY}{ AX }  \\ ie \: BY =AX \\ so \: as \: BY = 4.cm \:  \:  \:  \:  \:  \:  \:  \: (given) \\ AX = 4.cm

Similar questions