Math, asked by Khushikanyal13, 10 months ago

help me to find the value​

Attachments:

Answers

Answered by kiran12355
1

Step-by-step explanation:

answer as shown above...

Attachments:
Answered by Siddharta7
0

Answer:

3/10

Step-by-step explanation:

Given:

tanθ = 1/√2

We know that,

1 + cot²θ = cosec²θ

⇒ cosec²θ = cot²θ - 1

Therefore, the given expression can be written as,

\frac{cosec^2\theta - sec^2\theta}{cosec^2\theta + cot^2\theta}

\Rightarrow \frac{cosec^2\theta - sec^2\theta}{1 + cot^2\theta + cot^2\theta}

\Rightarrow \frac{cosec^2\theta - sec^2\theta}{1+2cot^2\theta}

\Rightarrow \frac{1 + cot^2\theta - (1 + tan^2\theta)}{1 + 2cot^2\theta}

\Rightarrow \frac{cot^2\theta-tan^2\theta}{1 + 2cot^2\theta}

tan\theta = \frac{1}{\sqrt{2}} \ \Rightarrow cot \theta = {\sqrt{2}}

\Rightarrow \frac{(\sqrt{2})^2 - (\frac{1}{\sqrt{2}})^2}{1 + 2 * (\sqrt{2})^2}

\Rightarrow \frac{2 - \frac{1}{2}}{1 + 2 * 2}

\rightarrow \boxed {\frac{3}{10}}

Hope it helps!

Similar questions