Math, asked by joshankhanal198, 2 months ago

help me to solve the expression a² + ab- 2b²​

Answers

Answered by pujau
1

Answer:

a^2+ab-2b^2

=a^2+3ab-2ab-3b^2+b^2

=a^2-2ab+b^2+3ab-3b^2

=(a-b) ^2+3b(a-b)

=(a-b) (a-b+3b)

=(a-b) (a+2b)

Answered by mathdude500
5

\large\underline{\sf{Solution-}}

Given expression is

\rm :\longmapsto\: {a}^{2} + ab -  {2b}^{2}

Method used :-

Splitting of middle terms :-

In order to factorize  ax² + bx + c we have to find numbers p and q such that p + q = b and pq = ac.

After finding p and q, we split the middle term in the quadratic as px + qx and get required factors by grouping the terms.

❥ Solution :-

\rm :\longmapsto\: {a}^{2} + ab -  {2b}^{2}

So,

Here, we have to find p and q such that

\rm :\longmapsto\:pq =  - 2 {a}^{2} {b}^{2} \: and \: p + q = ab

Now,

pq can be rewritten as

\rm :\longmapsto\:pq =  - 2 {a}^{2} {b}^{2}  = (2ab) \times ( - ab)

so that

\rm :\longmapsto\:p + q = 2ab - ab = ab

So,

\rm :\longmapsto\:p = 2ab  \: and \: q = -  \: ab

Thus,

Given expression,

\rm :\longmapsto\: {a}^{2} + ab -  {2b}^{2}

can be rewritten as

\rm \:  =  \:  \:\: {a}^{2} + 2ab - ab -  {2b}^{2}

\rm \:  =  \:  \:a(a + 2b) - b(a + 2b)

\rm \:  =  \:  \:(a + 2b)(a - b)

Hence,

  \:  \:  \:  \:  \:  \: \underbrace{\boxed{ \sf{ \:\rm \:  {a}^{2} + ab - 2 {b}^{2}  =  \:  \:(a + 2b)(a - b)}}}

Additional Information :-

Let's solve more problems of same type!!

Question :- Factorize the following

Q - 1

\rm :\longmapsto\: {x}^{2} - xy -  {2y}^{2}

\rm \:  =  \:  \: {x}^{2} - 2xy + xy -  {2y}^{2}

\rm \:  =  \:  \:x(x - 2y) + y(x - 2y)

\rm \:  =  \:  \:(x - 2y)(x + y)

Q - 2

\rm :\longmapsto\: {2x}^{2} + xy - 3 {y}^{2}

\rm \:  =  \:  \: {2x}^{2} + 3xy - 2xy -  {3y}^{2}

\rm \:  =  \:  \:x(2x + 3y) - y(2x + 3y)

\rm \:  =  \:  \:(2x + 3y)(x - y)

Q - 3

\rm :\longmapsto\: {3x}^{2} - xy -  {2y}^{2}

\rm \:  =  \:  \: {3x}^{2} - 3xy + 2xy -  {2y}^{2}

\rm \:  =  \:  \:3x(x - y) + 2y(x - y)

\rm \:  =  \:  \:(3x  +  2y)(x - y)

Similar questions