Math, asked by mandeep1391, 1 year ago

help me to solve this ​

Attachments:

Answers

Answered by ihrishi
1

Step-by-step explanation:

13sin \:   \theta \:  = 5 \\ sin \:   \theta \:  =  \frac{5}{13}  \\ cos \:  \theta =  \sqrt{1 -  {sin}^{2}  \theta}  \\  =  \sqrt{1 -  (\frac{5}{13})^{2}  }  =  \sqrt{1 -  \frac{25}{169} }  \\  =  \sqrt{ \frac{169 - 25}{169} }  =  \sqrt{ \frac{144}{196} }  \\ cos \:  \theta =  \frac{12}{13}  \\ tan \:  \theta \:  =  \frac{sin \theta}{cos \theta}   =  \frac{ \frac{5}{13} }{ \frac{12}{13} }  =  \frac{5}{12}  \\  \frac{5sin \theta - 2cos \theta}{tan \theta}  =  \frac{5 \times  \frac{5}{13} - 2 \times  \frac{12}{13}  }{ \frac{5}{12} }  \\  =  \frac{ \frac{25}{13 }  -  \frac{24}{13} }{ \frac{5}{12} }   =  \frac{ \frac{25 - 24}{13} }{ \frac{5}{12} }  =  \frac{ \frac{1}{13} }{ \frac{5}{12} }  \\  =  \frac{1}{13}  \times  \frac{12}{5}  \\  =  \frac{12}{65}  \\ thus \\ \frac{5sin \theta - 2cos \theta}{tan \theta}  = \frac{12}{65}  \\

Similar questions