Math, asked by Prashnadangol12, 9 months ago

help me to solve this​

Attachments:

Answers

Answered by rocky200216
5

\large\mathcal{\underbrace{SOLUTION:-}}

L.H.S :-

= tan(A) + tan(A+60°) - tan(60°-A)

\rm{=\:tanA\:+\dfrac{tanA\:+\:tan60}{1\:-\:tanA.tan60}\:-\:\dfrac{tan60\:-\:tanA}{1\:+\:tan60.tanA}\:}

\rm{=\:tanA\:+\:\dfrac{tanA\:+\:tan60}{1\:-\:tanA.tan60}\:+\:\dfrac{tanA\:-\:tan60}{1\:+\:tan60.tanA}\:}

\rm{=\:tanA\:+\:\dfrac{tanA\:+\:\sqrt{3}}{1\:-\:\sqrt{3}.tanA}\:+\:\dfrac{tanA\:-\:\sqrt{3}}{1\:+\:\sqrt{3}.tanA}\:}

\rm{=\:tanA\:+\:\dfrac{tanA\:-\:\sqrt{3}}{1\:+\:\sqrt{3}tanA}\:+\:\dfrac{tanA\:+\:\sqrt{3}}{1\:-\:\sqrt{3}tanA}\:}

\rm{=\:tanA\:+\:\dfrac{(tanA\:-\:\sqrt{3}).{(1\:-\:\sqrt{3}.tanA)}\:+\:{(tanA\:+\:\sqrt{3}).{(1\:+\:\sqrt{3}.tanA})}}{1\:-\:3.tan^2A}\:}

\rm{=\:tanA\:+\:\dfrac{tanA\:-\:\sqrt{3}.tan^2A\:-\:\sqrt{3}\:+\:3.tanA\:+\:tanA\:+\:\sqrt{3}.tan^2A\:+\:\sqrt{3}\:+\:3.tanA}{1\:-\:3.tan^2A}\:}

\rm{=\:tanA\:+\:\dfrac{8.tanA}{1\:-\:3.tan^2A}\:}

\rm{=\:\dfrac{tanA\:-\:3.tan^3A\:+\:8.tanA}{1\:-\:3.tan^2A}\:}

\rm{=\:\dfrac{9.tanA\:-\:3.tan^3A}{1\:-\:3.tan^2A}\:}

\rm{=\:\dfrac{3\:(3.tanA\:-\:tan^3A)}{1\:-\:3.tan^2A}\:}

= 3.tan3A = R.H.S

✍️ L.H.S = R.H.S [Hence Proved] .

Similar questions