Math, asked by minibollywood04, 9 months ago

help me to solve this matrix problem ​

Attachments:

Answers

Answered by ROCKYBHAAI
2

Step-by-step explanation:

I EXPLAINED IT IN IMAGE

MARK IT BRAINLEAST ANSWER BRO

PLEASEEEEEEEW

CLICK THE IMAGE

AND VERIFY IT

Attachments:
Answered by Anonymous
39

Given :-

A = \left[\begin{array}{c c } 2&0 \\-1&7 \end{array}\right]\\  

and I = \left[\begin{array}{c c} 1 & 0 \\0 & 1\end{array}\right]\\

\sf{A^{2} = 9A + mI }\\

To Find :-

Value of m .

SOLUTION :-

Firstly we will find out the value of A^{2} \\

A \times A = \left[\begin{array}{c c } 2&-0 \\-1&7 \end{array}\right] \left[\begin{array}{c c } 2&-0 \\-1&7 \end{array}\right]\\

Now the matrix will be like this :-

\implies \left[\begin{array}{c c } a_{11}&a_{12} \\a_{21}&a_{22} \end{array}\right]\\

\implies a_{11} = [2 \times 2] + [0 \times -1] = 4 \\

\implies a_{12} = [2 \times 0] + [0 \times 7] = 0 \\

\implies a_{21} = [-1 \times 2] + [ 7 \times -1] = -9 \\

\implies a_{22} = [-1 \times 0] + [ 7 \times 7] = 49 \\

So our Matrix is :-

\implies A^{2} = \left[\begin{array}{c c } 4&0 \\-9&49 \end{array}\right]

Now A^{2} = 9A + mI \\

\implies \left[\begin{array}{c c } 4&0 \\-9&49 \end{array}\right] = 9 \left[\begin{array}{c c } 2&0 \\-1&7 \end{array}\right] + m \left[\begin{array}{c c } 1&0 \\0&1 \end{array}\right]\\

\implies \left[\begin{array}{c c } 4&0 \\-9&49 \end{array}\right] = \left[\begin{array}{c c } 18&0 \\-9&63 \end{array}\right] + m\left[\begin{array}{c c } 1&0 \\0&1 \end{array}\right]\\

Taking value of a left hand side

\implies \left[\begin{array}{c c } 4&0 \\-9&49 \end{array}\right] - \left[\begin{array}{c c } 18&0 \\-9&63 \end{array}\right] = m \left[\begin{array}{c c } 1&0 \\0&1 \end{array}\right]\\

\implies \left[\begin{array}{c c } -14&0 \\0&-14 \end{array}\right] = m \left[\begin{array}{c c } 1&0 \\0&1 \end{array}\right]\\

Taking -14 common

\implies - 14 \left[\begin{array}{c c } 1&0 \\0&1 \end{array}\right]= m \left[\begin{array}{c c } 1&0 \\0&1 \end{array}\right]\\

Now by comparing both sides we got

\boxed{\sf{\implies\; m = -14}}\\

Similar questions