Math, asked by basithacker55, 22 days ago

help me to solve this question​

Attachments:

Answers

Answered by MysticSohamS
0

Answer:

hey here is your solution

pls mark it as brainliest

Step-by-step explanation:

so \: here \:  given \: quadratic \: equation \: is \\ 2sin {}^{2} x + 2 \sqrt{2}  \: sinx - 3 = 0 \\  \\ so \: comparing \: it \: with \:  \: a.sin {}^{2} x  + b.sinx + c = 0 \\ we \: get \\ a = 2 \:  \\ b = 2  \sqrt{2}  \\ c =  - 3 \\  \\ now \: applying \\ Δ = b {}^{2}  - 4ac \\  = (2 \sqrt{2} ) {}^{2}  - 4 \times 2 \times ( - 3) \\  = 8 - ( - 24) \\  = 8 + 24 \\  = 32 \\  \\ so \: by \: applying \: formula \: method \\ we \: get \\  \\ sin \: x =  \frac{ - b \: ± \:  \sqrt{b {}^{2}  - 4ac} }{2a}  \\  \\  =  \frac{ - 2 \sqrt{2}  \: ± \:  \sqrt{32}  }{2 \times 2}  \\  \\  =  \frac{ - 2 \sqrt{2}  \: ± \: 4 \sqrt{2} }{4}  \\  \\  sin \: x =  \frac{ - 2 \sqrt{2}  \:  +  \: 4 \sqrt{2} }{4}  \:  \: or \:  \: sin \: x =  \frac{ - 2 \sqrt{2}   - 4 \sqrt{2} }{4}  \\  \\  =  \frac{2 \sqrt{2} }{4}  \:  \: \: or \:  \:  \:  =  \frac{ - 6 \sqrt{2} }{4}  \\  \\  sin \: x=  \frac{ \sqrt{2} }{2}  \:  \: \:  or \:  \:  sin \: x=  \frac{ - 3 \sqrt{2} }{2}

Similar questions