Math, asked by Anonymous, 5 months ago

HELP me with above attachment​

Attachments:

Answers

Answered by BrainlyIAS
58

Question :

\bullet\ \; \sf \red{\dfrac{32}{x}+\dfrac{33}{y}=31}

\bullet\ \; \sf \red{\dfrac{33}{x}+\dfrac{32}{y}=34}

Solve for 'x' and 'y'

Solution :

Let ,

\bullet\ \; \sf p= \dfrac{1}{x}\ and\ q=\dfrac{1}{y}

Equations become ,

32 p + 33 q = 31  ... (1)

33 p + 32 q = 34 ... (2)

Note : This kind of equations can easily solved by addition or subtraction of equations .

On adding (1) & (2) ,

⇒ 65 p + 65 q = 65

p + q = 1  ... (3)

On subtracting (1) from (2) ,

p - q = 3 ... (4)

On adding (3) & (4) ,

➠ 2p = 4

p = 2  \pink{\bigstar}

On subtracting (4) from (3) ,

➠ 2q = - 2

q = - 1  \green{\bigstar}

So ,

\bullet\ \; \sf \pink{p=\dfrac{1}{x}=2}

\longrightarrow\ \sf \pink{ x= \dfrac{1}{2} }

\bullet\ \; \sf \green{q=\dfrac{1}{y}=-1}

\longrightarrow\ \sf \green{y=-1}


Asterinn: Nice!
BrainlyIAS: Thanks ❤
shadowsabers03: Cool!
BrainlyIAS: Thanks ❤
Answered by Tomboyish44
58

Question: To solve:

\sf \dfrac{32}{x} + \dfrac{33}{y} = 31 \ \ \ \ ; \ \ \ \dfrac{33}{x} + \dfrac{32}{y} = 34

Solution:

Let the first equation be Eq(1), and let the second equation be Eq(2).

\sf \Longrightarrow \dfrac{32}{x} + \dfrac{33}{y} = 31 \ \ \dashrightarrow Eq(1)

\sf \Longrightarrow \dfrac{33}{x} + \dfrac{32}{y} = 34 \ \ \dashrightarrow Eq(2)

To make solving easier, let's consider that:

\Longrightarrow \sf {\dfrac{1}{x} = a \ \ and \ \ \dfrac{1}{y} = b}

Substitute these values in the two equations given in the question.

For equation 1:

\sf \Longrightarrow \dfrac{32}{x} + \dfrac{33}{y} = 31

\sf \Longrightarrow 32 \times \Bigg[\dfrac{1}{x}\Bigg] + 33 \times \Bigg[\dfrac{1}{y}\Bigg] = 31

\sf \Longrightarrow 32 \times \Bigg[a\Bigg] + 33 \times \Bigg[b\Bigg] = 31

\sf \Longrightarrow 32a + 33b = 31 \ \ \dashrightarrow Eq(3)

Let the above equation be named Eq(3).

For equation 2:

\sf \Longrightarrow \dfrac{33}{x} + \dfrac{32}{y} = 34

\sf \Longrightarrow 33 \times \Bigg[\dfrac{1}{x}\Bigg] + 32 \times \Bigg[\dfrac{1}{y}\Bigg] = 34

\sf \Longrightarrow 33 \times \Bigg[a\Bigg] + 32 \times \Bigg[b\Bigg] = 34

\sf \Longrightarrow 33a + 32b = 34 \ \ \dashrightarrow Eq(4)

Let the above equation be named Eq(4).

On observing both the equations 3 and 4, you can tell that they're of the form;

  • ax + by = c₁
  • bx + ay = c₂

When equations are of this form, we can use the Add & Subtract Method to solve them.

[Any other method is fine too, this one's quicker for these kind of questions]

Adding equations (3) and (4) we get:

⇒ 32a + 33b + [33a + 32b] = 31 + [34]

⇒ 65a + 65b = 65

⇒ 65[a + b] = 65

⇒ a + b = 1 → Let this be Eq(5)

Subtracting equations (3) and (4) we get:

⇒ 32a + 33b - [33a + 32b] = 31 - 34

⇒ 32a + 33b - 33a - 32b = -3

⇒ -a + b = -3 → Let this be Eq(6)

Now, on adding Eq(5) and Eq(6) we get:

⇒ a + b + [-a + b] = 1 + [-3]

⇒ a + b - a + b = 1 - 3

⇒ 2b = -2

b = -1

Substitute the value of "b" in Eq(6).

⇒ -a + b = -3

⇒ -a + [-1] = -3

⇒ -a - 1 = -3

⇒ -a = -3 + 1

⇒ -a = -2

a = 2

Now we've got the values of both "a" and "b". Now substitute both "a" and "b" in 1/x = a and 1/y = b respectively,

For 'x':

\Longrightarrow \sf \dfrac{1}{x} = a \\

\Longrightarrow \sf \dfrac{1}{x} = 2 \\

\Longrightarrow \boxed{\sf x = \dfrac{1}{2}}

For 'y':

\Longrightarrow \sf \dfrac{1}{y} = b

\Longrightarrow \sf \dfrac{1}{y} = -1

\Longrightarrow \boxed{\sf y = -1}

Therefore:

x = 1/2

y = -1

Hence solved.


BrainlyIAS: While writing " For x " You have missed '}' in two cases
Tomboyish44: Is the error on the website too, or just the app? I'm not able to spot it
Tomboyish44: Added more brackets, is it fine now?
BrainlyIAS: Fine now :)
That's awesome ♥
Asterinn: Perfect! :D
Tomboyish44: Thank you BrainlyIAS & Asterinn!
shadowsabers03: That's awesome! @Tomboyish44
Tomboyish44: Thank you shadowsabers03!
prince5132: Great
Tomboyish44: Thank you prince5132!
Similar questions