Math, asked by adith2605, 4 months ago

help me with this sum
using quadratic formola​

Attachments:

Answers

Answered by rusandi
1

Step-by-step explanation:

4-11x=3x²

3x²=4-11x

3x²+11x-4=0

3x²+12x-x-4=0

3x(x+4)-(x+4)=0

(3x-1)(x+4)=0

x=1/3 or x=-4

Answered by deepakkumar9254
4

Question :-

Solve this using quadratic formula -

4 - 11x = 3x²

Solution :-

=> 4 - 11x = 3x²

=> -3x² + 4 - 11x = 0

=> -3x² - 11x + 4 = 0

In the given equation,

a = -3,

b = -11,

c = 4

Quadratic Formula -

x = \dfrac{-b + \sqrt{b^{2}- 4ac } }{2a}  OR  \dfrac{-b - \sqrt{b^{2}- 4ac } }{2a}

Substituting values from the equation in the Quadratic Formula -

So, x = \dfrac{-(-11) + \sqrt{(-11)^{2}- (4\times -3\times 4) } }{2\times -3}  

                               OR

           \dfrac{-(-11) - \sqrt{(-11)^{2}- (4\times -3\times 4) } }{2\times -3}

=> x = \dfrac{11 + \sqrt{121- (-48) } }{-6}  OR  \dfrac{11 - \sqrt{121- (-48) } }{-6}

=> x = \dfrac{11 + \sqrt{121+48 } }{-6}  OR  \dfrac{11 - \sqrt{121+48} }{-6}

=> x = \dfrac{11 + \sqrt{169 } }{-6}  OR  \dfrac{11 - \sqrt{169} }{-6}

=> x = \dfrac{11 +13 }{-6}  OR  \dfrac{11 -13}{-6}

=> x = \dfrac{24}{-6}  OR  \dfrac{-2}{-6}

=> x = \dfrac{-4}{1}  OR  \dfrac{1}{3}

=> x = -4  OR  \dfrac{1}{3}

∴ The roots of given equation are :- -4 and  \dfrac{1}{3}.

Similar questions