Math, asked by Anonymous, 17 days ago

Help me with this, this is my last question this day . pls don't spam.​

Attachments:

Answers

Answered by mathdude500
11

\large\underline{\sf{Solution-3}}

Given polynomial is

\rm \:  {x}^{3} +  {4x}^{2} + x - 6

Let assume that

\rm \: f(x) =  {x}^{3} +  {4x}^{2} + x - 6

Let check x = - 3

\rm \: f( - 3) =  {( - 3)}^{3} +  {4( - 3)}^{2}  - 3 - 6

\rm \: f( - 3) =   - 27 + 36  - 9

\rm \: f( - 3) = 0

\rm\implies \: - \:  3 \: is \: its \: solution

Now, Let check - 2

\rm \: f( - 2) =  {( - 2)}^{3} +  {4( - 2)}^{2}  - 2 - 6

\rm \: f( - 2) =   - 8 +  16  - 2 - 6

\rm \: f( - 2) =   0

\rm\implies \: - \:  2 \: is \: its \: solution

Now, Let's check x = 1

\rm \: f(1) = 1 + 4 + 1 - 6

\rm \: f(1) = 0

\rm\implies  \:  1\: is \: its \: solution

Let's check x = 2

\rm \: f(2) =  {(2)}^{3} +  {4(2)}^{2} + 2 - 6

\rm \: f(2) =  8 + 16 - 4

\rm \: f(2) =  20

\rm\implies  \:  2\: is  \: not\: its \: solution

So, Option D. is correct.

\large\underline{\sf{Solution-4}}

Given polynomial is

\rm \:  {x}^{4} +  {5x}^{3} +  {6x}^{2} - 4x - 8

So, By synthetic Division, we have

\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered} \:\: \begin{array}{c|c} {\underline{\sf{}}}&{{\sf{\:\: \:\:}}}\\ {\underline{\sf{ - 2}}}& {\sf{\: 1 \: \: \: \: \: 5 \: \: \: \: \:  \:  \: 6 \: \: \: \: - 4 \:  \:  \:  \:  \:  \:  - 8 \:\:}} \\{\sf{}}& \underline{\sf{\:\: \: \:  \: - 2 \: \:  - 6\:\:  \:  \:  \:  \:  0\: \:  \:  \:  \: - 8  \:  \: }} \\ {{\sf{}}}& {\sf{\: \:  \:  \:  \:  \:  1\:  \:  \:  3\:  \:  \: 0  \:  \:  \:   - 4 \:  \:  \:  \:  \:  \:  \: [ \: 0\: \: \:  \:  \:  \:   \:\:}} \\ {\sf{\:}}  \end{array}\end{gathered}\end{gathered}\end{gathered} \\ \end{gathered}

So, x + 2 is its factor

\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered} \:\: \begin{array}{c|c} {\underline{\sf{}}}&{{\sf{\:\: \:\:}}}\\ {\underline{\sf{ - 2}}}& {\sf{\: 1 \: \: \: \: \: 3\: \: \: \: \:  \:  \: 0 \: \: \: \: - 4 \:\:}} \\{\sf{}}& \underline{\sf{\:\: \:  \:   \:  - 2 \:  \: \: - 2\:  \:  \:  \:  \: 4\: \:  \: \:\:}} \\ {{\sf{}}}& {\sf{\: \:  \:  \:  \:  \:   \:  \:  \:  \: 1\:  \:  \:  1\:  - 2  \:  \:  \:  [ \: 0\: \: \:  \:  \:  \:   \:\:}} \\ {\sf{\:}}  \end{array}\end{gathered}\end{gathered}\end{gathered} \\ \end{gathered}

So, x + 2 is its factor

\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered} \:\: \begin{array}{c|c} {\underline{\sf{}}}&{{\sf{\:\: \:\:}}}\\ {\underline{\sf{ - 2}}}& {\sf{\: 1 \: \: \: \: \: 1\: \: \: \: \: - 2 }} \\{\sf{}}& \underline{\sf{\:\: \:  \:  \:  - 2\: \: \: \:  \:  \:  \:  \:  \: 2\:   \:\:}} \\ {{\sf{}}}& {\sf{\: \:  \:  \:  \:  \:  \:1  \:   - 1\:    \:   \:  \: [ \: 0\: \: \:  \:  \:  \:   \:\:}} \\ {\sf{\:}}  \end{array}\end{gathered}\end{gathered}\end{gathered} \\ \end{gathered}

So, x + 2 is its factor

\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered} \:\: \begin{array}{c|c} {\underline{\sf{}}}&{{\sf{\:\: \:\:}}}\\ {\underline{\sf{ - 2}}}& {\sf{\: 1 \: \: \: \: \:  - 1\:  }} \\{\sf{}}& \underline{\sf{\:\: \:  \:  \:   \:  \:  \:  \:  \:  \:  \: - 2\: \: \: \:  \:     \:\:}} \\ {{\sf{}}}& {\sf{\: \:  \:  \:  \:  \:  \: \:  \:  \:  \: 1   \:  \:  \:  \: \: [ \:  - 3\: \: \:  \:  \:  \:   \:\:}} \\ {\sf{\:}}  \end{array}\end{gathered}\end{gathered}\end{gathered} \\ \end{gathered}

So, x + 2 is not a factor

So, x + 2 repeat three times

So, option C is correct

\large\underline{\sf{Solution-5}}

Let assume that

\rm \: a =  - 2

\rm \: b =  3

\rm \: c =  5

\rm \: S_1 = a + b + c

\rm \:  =  \:  - 2 + 3 + 5

\rm \:  =  \:  6

\rm\implies \:S_1 = 6 \\

Now, Consider

\rm \: S_2 = ab + bc + ca

\rm \:  =  \:  - 2 \times 3 + 3 \times 5 + 5 \times ( - 2)

\rm \:  =  \:  - 6 + 15 - 10

\rm \:  =  \:  - 1

\rm\implies \:S_2 \:  =  \:  -  \: 1 \\

Now, Consider

\rm \: S_3 = abc

\rm \:  =  \:  - 2 \times 3 \times 5

\rm \:  =  \:  - 30

\rm\implies \:S_3 \:  =  \:  -  \: 30 \\

So, The required polynomial is

\rm \: f(x) =  {x}^{3} - S_1 {x}^{2}  + S_2x - S_3

\rm \: f(x) =  {x}^{3}  - 6{x}^{2}  - x + 30

So, Option B is correct.

Answered by αииιє
7

Answer:

solution 3 ans is b as above explanation is given

Thanx

Similar questions