Math, asked by ballichahar, 1 year ago

help no pranksplease​

Attachments:

Answers

Answered by Swarup1998
4

Solution :

\displaystyle \bigg(\frac{3^{-1}\times 5^{-2}}{3^{2}\times 5^{-4}}\bigg)^{1/3}\times \bigg(\frac{3^{-1}\times 5^{-1}}{3^{3}\times 5^{-5}}\bigg)^{-1/2}

\displaystyle=\bigg(\frac{5^{-2}\times 5^{4}}{3^{2}\times 3^{1}}\bigg)^{1/3}\times \bigg(\frac{5^{-1}\times 5^{5}}{3^{3}\times 3^{1}}\bigg)^{-1/2}

\displaystyle=\bigg(\frac{5^{-2+4}}{3^{2+1}}\bigg)^{1/3}\times \bigg(\frac{5^{-1+5}}{3^{3+1}}\bigg)^{-1/2}

\displaystyle=\bigg(\frac{5^{2}}{3^{3}}\bigg)^{1/3}\times \bigg(\frac{5^{4}}{3^{4}}\bigg)^{-1/2}

\displaystyle=\frac{5^{2/3}}{3^{3/3}}\times \frac{5^{-4/2}}{3^{-4/2}}

\displaystyle=\frac{5^{2/3}}{3^{1}}\times \frac{5^{-2}}{3^{-2}}

\displaystyle=\frac{3^{2}\times 3^{-1}}{5^{-2/3}\times 5^{2}}

\displaystyle=\frac{3^{2-1}}{5^{2-2/3}}

\displaystyle=\frac{3^{1}}{5^{4/3}}

\to \displaystyle \boxed{\bigg(\frac{3^{-1}\times 5^{-2}}{3^{2}\times 5^{-4}}\bigg)^{1/3}\times \bigg(\frac{3^{-1}\times 5^{-1}}{3^{3}\times 5^{-5}}\bigg)^{-1/2}=\frac{3^{1}}{5^{4/3}}}

Laws of Indices :

\displaystyle 1.\:a^{m}\times a^{n}=a^{m+n}

\displaystyle 2.\:a^{m}\div a^{n}=a^{m-n}

\displaystyle 3.\:(a^{m})^{n/p}=a^{mn/p}

Answered by protestant
3

Hi, your sweet answer is above ;

Formula to be remembered:

x ^{m } \div x^{n}  = x ^{m - n}

x ^{m}  \times x^{n}  = x^{m + n}

✌️plzzzz remember this two formula✌️✌️✌️✌️✌️✌️✌️✌️✌️✌️✌️✌️✌️✌️✌️

Attachments:

Swarup1998: In second line, it will be (-1-2)
Similar questions