Math, asked by Amaannn, 5 days ago

help please!?!!?????​

Attachments:

Answers

Answered by AmrutanshuDash07
2

Step-by-step explanation:

answer above alternative also attached :)

hope it helps!

Mark as brainliest!

Attachments:
Answered by mathdude500
5

\large\underline{\sf{Given \:Question - }}

 \sf \: If \: y = \dfrac{ {(1 - x)}^{2} }{ {x}^{2} }, \: then \: \dfrac{dy}{dx} \: is \:

 \green{\large\underline{\sf{Solution-}}}

Given expression is

 \rm :\longmapsto\: y = \dfrac{ {(1 - x)}^{2} }{ {x}^{2} }

can be rewritten as

\rm :\longmapsto\:y =  {\bigg[\dfrac{1 - x}{x} \bigg]}^{2}

\rm :\longmapsto\:y =  {\bigg[\dfrac{1}{x} - 1 \bigg]}^{2}

On differentiating both sides w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx}y = \dfrac{d}{dx} {\bigg[\dfrac{1}{x} - 1 \bigg]}^{2}

We know,

\boxed{ \tt{ \: \dfrac{d}{dx} {x}^{n} \:  =  \:  {nx}^{n - 1} \: }}

So, using this, we get

\rm :\longmapsto\:\dfrac{dy}{dx} = 2\bigg[\dfrac{1}{x} - 1\bigg] \: \dfrac{d}{dx}\bigg[\dfrac{1}{x}  - 1\bigg]

We know,

\boxed{ \tt{ \: \dfrac{d}{dx}k \:  =  \: 0 \: }}

and

\boxed{ \tt{ \: \dfrac{d}{dx} \frac{1}{ {x}^{n} } \:  =  \:  \frac{ - n}{ {x}^{n + 1} }  \: }}

So, using this, we get

\rm :\longmapsto\:\dfrac{dy}{dx} = 2\bigg[\dfrac{1}{x} - 1\bigg] \:  \times \bigg[\dfrac{ - 1}{ {x}^{2} }  - 0\bigg]

\rm \implies\:\dfrac{dy}{dx} = \:   -  \: \dfrac{2}{ {x}^{3} } + \dfrac{2}{ {x}^{2} }

Hence,

 \red{ \boxed{\sf \: If \: y = \dfrac{ {(1 - x)}^{2} }{ {x}^{2} }, \: then \: \dfrac{dy}{dx} \: is \: -  \: \dfrac{2}{ {x}^{3} } + \dfrac{2}{ {x}^{2} }}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

More to Know :-

 \green{\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x}\\ \\ \sf   {sin}^{ - 1}x & \sf \dfrac{1}{ \sqrt{1 -  {x}^{2} } } \\ \\ \sf  {cos}^{ - 1}x  & \sf  \dfrac{ - 1}{ \sqrt{1 -  {x}^{2} } } \\ \\ \sf  {tan}^{ - 1}x  & \sf  \dfrac{1}{1 +  {x}^{2} } \\ \\ \sf  {sec}^{ - 1}x & \sf   \dfrac{1}{x \sqrt{ {x}^{2} - 1 } }   \end{array}} \\ \end{gathered}}

Similar questions