English, asked by naahgoriye161, 1 month ago

Help please ⚡⚡⚡

❌ DON'T SPAM ❌
⚠ ANSWER WILL BE REPORTED ⚠ ​

Attachments:

Answers

Answered by misscuteangel
110

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \huge\mathcal{\fcolorbox{aqua}{azure}{\red{✿ \: Answer ❖}}}

 \\  \\

GIVEN :

  • Quadrilateral sides

TO FIND :

  • Area of the Quadrilateral = ?

SOLUTION :

CONSTRUCTION :

  • Draw AD ll CE So that CE parallel to AB.

IN TRIANGLE BEC , ANGLE E = 90°

{ \boxed{ \blue {by  \: pythagoreas \: theoram = (h) ^{2} = (b) ^{2}  + (h) ^{2}     }}}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  = (BC)^{2} =  (EB)^{2} +  (EC) ^{2}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  = (13)^{2}  = (5)^{2}  + (EC) ^{2}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  = 169 = 25 + (EC)^{2}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: 169 - 25 = (EC)^{2}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: 144 = (EC)^{2}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \sqrt{144}  = EC

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  = 12 \: m \:  = EC

Area of Triangle = 1/2 × b ×h

= 1/2 × 5 × 12

= 30 m2

Area of rectangle AECD = l × b

= 13 × 12

= 156 m2

Area of Quadrilateral = Area of Reactangle AECD + Area of Triangle

= 156 + 30

= 186 m2

HENCE, THE AREA OF QUADRILATERAL = 186 M

Attachments:
Answered by udteparindey30161
3

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \huge\mathcal{\fcolorbox{aqua}{azure}{\red{✿ \: Answer ❖}}}

 \\  \\

CONSTRUCTION :

  • Draw AD ll CE So that CE parallel to AB.

IN TRIANGLE BEC , ANGLE E = 90°

{ \boxed{ \blue {by  \: pythagoreas \: theoram = (h) ^{2} = (b) ^{2}  + (h) ^{2}     }}}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  = (BC)^{2} =  (EB)^{2} +  (EC) ^{2}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  = (13)^{2}  = (5)^{2}  + (EC) ^{2}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  = 169 = 25 + (EC)^{2}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: 169 - 25 = (EC)^{2}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: 144 = (EC)^{2}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \sqrt{144}  = EC

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  = 12 \: m \:  = EC

Hello

Similar questions