Math, asked by OZzzz, 2 months ago

Help please friends

_____/|\_____​

Attachments:

Answers

Answered by arunpatodi18
1

Answer:

Hence, Number of terms of the AP [ 9 , 17 , 25 ] which are required to make the sum of 636 is 12

Step-by-step explanation:

pls mark brainliest

Answered by BrainlyElegent
15

Answer:

\bf\huge{Solution:-}

In the AP

a = 9, d = 17 -9 =8

Now,

\bf{Sn= \:n/2 \:{2a+(n-1)d}}

\bf{=>636=n/2{2×9+(n-1)8}}

\bf{=> \:1272= \:n{18+8n-8}}

=>1272= n{10+8n)

\bf{=>1272=10n+8n²}

\bf{=>1272=2(5n+4n²)}

\bf{=>1272/2=5n+4n²}

\bf{=> 636 = 5n4n²}

\bf{=> 0=4n² + 5n - 636}

\bf{=>0=4n²+5n - 636}

\bf{=>0=n(4n²+53)-12(4n+53)}

\bf{=>0=(n-12)(4n+53)}

\bf{Either,n-12=0 or 4n-53=0}

\bf{\:n=2 \:n=53/4(not possible)}[\tex]</p><p></p><p></p><p></p><p>[tex]\bf{Therefore,n=12}

\bf{Hence, \:no \:of \:term=12}

Similar questions