Math, asked by jupiterwow, 7 months ago

help please. How can I integrate this one?​

Attachments:

Answers

Answered by Asterinn
61

 \implies\displaystyle \int  {(2x + 3)}^{2} dx

We know that :-

  • (a+b)²= a²+b²+2ab

\implies\displaystyle \int ( 4 {x}^{2}  + 9 + 12x \: )dx

\implies\displaystyle \int  4 {x}^{2} dx + \displaystyle \int9 \: dx + \displaystyle \int12x \: dx

\implies  \dfrac{4 {x}^{3} }{3}  + 9x +  \dfrac{12 {x}^{2} }{2}   + c

where c is constant

\implies  \dfrac{4 {x}^{3} }{3}  + 9x +  \dfrac{6{x}^{2} }{1}   + c

\implies  \dfrac{4 {x}^{3} }{3}  + 9x +  6{x}^{2}    + c

Answer :

 \dfrac{4 {x}^{3} }{3}  + 9x +  6{x}^{2}    + c

____________________

\large\bf\red{Learn\:More}

∫ 1 dx = x + C

∫ sin x dx = – cos x + C

∫ cos x dx = sin x + C

∫ sec2 dx = tan x + C

∫ csc2 dx = -cot x + C

∫ sec x (tan x) dx = sec x + C

∫ csc x ( cot x) dx = – csc x + C

∫ (1/x) dx = ln |x| + C

∫ ex dx = ex+ C

∫ ax dx = (ax/ln a) + C

______________________


amitkumar44481: Great :-)
mddilshad11ab: perfect
Answered by amitkumar44481
97

QuestioN :

\tt \bullet\int( 2x + 3 )^2 \,dx \\

AnsWer :

4x²/3 + 9x + 6x² + c.

SolutioN :

Integration w.r.t.x

\tt \mapsto I = \int( 2x + 3 )^2 \,dx \\

\tt \mapsto I = \int(4 {x}^{2}  + 9 + 12x) \,dx \\

★ By Sum rule of integration separate the terms.

\tt \mapsto I = \int4 {x}^{2}\,dx  +  \int 9\,dx +  \int 12x\,dx \\

\tt \mapsto I = 4\int {x}^{2}\,dx  +  9\int \,dx +  12\int x\,dx \\

\tt \mapsto I = 4\frac{ {x}^{3}}{3}  +  9x +  \cancel{12}\frac{ {x}^{2} }{\cancel2} + c.\\

\tt \mapsto I = \frac{ {4x}^{3}}{3}  +  9x +  6{x}^{2} + c.\\

Therefore, the required value be 4x²/3 + 9x + 6x² + c.

MorE InformatioN.

\tt \mapsto 1\int\,dx  = x + c.\\

\tt \mapsto \int {x}^{n} \,dx  =   \frac{{x}^{n + 1}}{n + 1} + c. \\

\tt \mapsto \int\,Cosx\,dx  = Sinx + c.\\

\tt \mapsto \int\,Sinx\,dx  = -Cosx + c.\\

\tt \mapsto \int\,Sec^2x\,dx  = tanx + c.\\


Draxillus: Excellent !
amitkumar44481: Thanks :-)
mddilshad11ab: awesome:)
amitkumar44481: Thanks :-)
Similar questions