Help......
Please provide me all the formulas of trigonometry chapter of class 11th..
No spamming
Answers
Answer:
Here it is
Step-by-step explanation:
Trigonometry Class 11 Formulas
sin(−θ)=−sinθ
cos(−θ)=cosθ
tan(−θ)=−tanθ
cosec(−θ)=−cosecθ
sec(−θ)=secθ
cot(−θ)=−cotθ
Product to Sum Formulas
sinx siny=12[cos(x–y)−cos(x+y)]
cosxcosy=12[cos(x–y)+cos(x+y)]
sinxcosy=12[sin(x+y)+sin(x−y)]
cosxsiny=12[sin(x+y)–sin(x−y)]
Sum to Product Formulas
sinx+siny=2sin(x+y2)cos(x−y2)
sinx−siny=2cos(x+y2)sin(x−y2)
cosx+cosy=2cos(x+y2)cos(x−y2)
cosx−cosy=–2sin(x+y2)sin(x−y2)
Answer:
Step-by-step explanation:
sin(−θ)=−sinθ
cos(−θ)=cosθ
tan(−θ)=−tanθ
cosec(−θ)=−cosecθ
sec(−θ)=secθ
cot(−θ)=−cotθ
Product to Sum Formulas
sinx siny=1/2[cos(x-y)−cos(x+y)]
cosxcosy=1/2[cos(x-y)+cos(x+y)]
sinxcosy=1/2[sin(x+y)+sin(x−y)]
cosxsiny=1/2[sin(x+y)-sin(x−y)]
Sum to Product Formulas
sinx+siny=2sin(x+y/2)cos(x−y/2)
sinx−siny=2cos(x+y/2)sin(x−y/2)
cosx+cosy=2cos(x+y/2)cos(x−y/2)
cosx−cosy= -2sin(x+y/2)sin(x−y/2)
Basic Formulas
sin(A+B)=sinAcosB+cosAsinB
sin(A−B)=sinAcosB-cosAsinB
cos(A+B)=cosAcosB-sinAsinB
cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=tanA+tanB/1-tanAtanB
tan(A-B)=tanA-tanB/1+tanAtanB
cos(A+B)cos(A-B)=cos²A–sin²B=cos²B–sin²A
sin(A+B)sin(A–B)=sin²A–sin²B = cos²B–cos²A
sin2A = 2sinAcosA = 2tanA/1+tan²A
cos2A=cos²A–sin²A = 1–2sin²A = 2cos²A – 1 = 1−tan²A/1+tan²A
tan2A = 2tanA/1–tan²A
sin3A= 3sinA–4sin³A
cos3A= 4cos³A–3cosA
tan3A=3tanA–tan³A/1−3tan²A
sinA+sinB=2sin(A+B/2)cos(A−B/2)