Math, asked by ishika7968, 11 months ago

Help......

Please provide me all the formulas of trigonometry chapter of class 11th..

No spamming ​

Answers

Answered by ankitpuri829
2

Answer:

Here it is

Step-by-step explanation:

Trigonometry Class 11 Formulas

sin(−θ)=−sinθ

cos(−θ)=cosθ

tan(−θ)=−tanθ

cosec(−θ)=−cosecθ

sec(−θ)=secθ

cot(−θ)=−cotθ

Product to Sum Formulas

sinx siny=12[cos(x–y)−cos(x+y)]

cosxcosy=12[cos(x–y)+cos(x+y)]

sinxcosy=12[sin(x+y)+sin(x−y)]

cosxsiny=12[sin(x+y)–sin(x−y)]

Sum to Product Formulas

sinx+siny=2sin(x+y2)cos(x−y2)

sinx−siny=2cos(x+y2)sin(x−y2)

cosx+cosy=2cos(x+y2)cos(x−y2)

cosx−cosy=–2sin(x+y2)sin(x−y2)

Answered by spiderman2019
3

Answer:

Step-by-step explanation:

sin(−θ)=−sinθ  

cos(−θ)=cosθ

tan(−θ)=−tanθ

cosec(−θ)=−cosecθ

sec(−θ)=secθ

cot(−θ)=−cotθ

Product to Sum Formulas

sinx siny=1/2[cos(x-y)−cos(x+y)]

cosxcosy=1/2[cos(x-y)+cos(x+y)]

sinxcosy=1/2[sin(x+y)+sin(x−y)]

cosxsiny=1/2[sin(x+y)-sin(x−y)]

Sum to Product Formulas

sinx+siny=2sin(x+y/2)cos(x−y/2)

sinx−siny=2cos(x+y/2)sin(x−y/2)

cosx+cosy=2cos(x+y/2)cos(x−y/2)

cosx−cosy= -2sin(x+y/2)sin(x−y/2)

Basic Formulas

sin(A+B)=sinAcosB+cosAsinB

sin(A−B)=sinAcosB-cosAsinB

cos(A+B)=cosAcosB-sinAsinB

cos(A-B)=cosAcosB+sinAsinB

tan(A+B)=tanA+tanB/1-tanAtanB

tan(A-B)=tanA-tanB/1+tanAtanB

cos(A+B)cos(A-B)=cos²A–sin²B=cos²B–sin²A

sin(A+B)sin(A–B)=sin²A–sin²B = cos²B–cos²A

sin2A = 2sinAcosA = 2tanA/1+tan²A

cos2A=cos²A–sin²A = 1–2sin²A = 2cos²A – 1 = 1−tan²A/1+tan²A

tan2A = 2tanA/1–tan²A

sin3A= 3sinA–4sin³A

cos3A= 4cos³A–3cosA  

tan3A=3tanA–tan³A/1−3tan²A

sinA+sinB=2sin(A+B/2)cos(A−B/2)

Similar questions