Math, asked by zee95, 11 months ago

Help please

Y=Ae^bx

Please solve 5 (b)

Thanks

Attachments:

Answers

Answered by varaddaithankar
4

Answer:

Step-by-step explanation:

Assuming you have solved a part A=4,B= -1/10

Now Take a Derivative wrt x

dy/dx=gradient= -1 =ABe^(bx)

putting values of A & B

x=1/4*ln(5/2)

again put this value in the equation to get y


varaddaithankar: Is it correct
varaddaithankar: did you understand?
zee95: Answer of coordinate must be (-10 ln 2.5, 10 )
zee95: And I really don't understand how
zee95: Thanks for trying
varaddaithankar: Are you know how to differenciate a function
varaddaithankar: differenciatnio(dy/dx) is nothin but gradient that is slope
Answered by Anonymous
3

HEYA \:  \\  \\ y = ae {}^{bx}   \\  \\ a \: part)\\  \\ (0 \:  \: 4)  \:  \:  \: x = 0 \:  \:  \: and \:  \:  \: y = 4 \\ put \: these \: two \:  \: values \: \: of \: x \: and \:  y \:  in \: above \:  \\ equation \: we \: have \:  \\  \\ 4 = ae {}^{b \times 0}  \\ \\  a = 4 \\  \\ (10 \:  \:  \: 4 \div e) \:  \:  \: x = 10 \:  \:  \: and \:  \:  \: y = 4 \div e \\ put \: these \: values \: of \: x \: and \: y \: in \\  \: above \: equation \: we \: have \\  \\ (4 \div e) = ae {}^{10b}  \\  \\ (4 \div e) = 4 \times e {}^{10b}  \\  \\ (1 \div e) = e {}^{10b}  \\  \\ e {}^{ - 1}  = e {}^{10b}  \\ take \: ln \: on \: both \: sides \: we \: have \\  \\  ln(e {}^{ - 1} )  =  ln(e {}^{10b} )  \\  \\  - 1 = 10b \\  \\ b = -  (1 \div 10) \\  \\  \\ b \: part \: ) \\  \\ y = ae {}^{bx}  \\   \\ take \: ln \: on \: both \: sides \: we \: have \\  \\  ln(y)  =  ln(a) + bx  \: ....Equation \: i \:  \: \\  \\ Differentiate \: both \: sides \: with \:  \\ respect \: to \: x \: we \: have \\  \\ (1 \div y)dy \div dx = b \\  \\ dy \div dx = yb  \:  \:  \:  \:  \:  \:  \: (dy \div dx) =  - 1 \\  \\  - 1 = yb \\  \\  - 1 =  - (1 \div 10)y \\  \\ y = 10 \\  \\ now \: put \: value \: of \: y \: in \: equation \: i \: we \: have \\  \\  ln(10)  =  ln(4)  + bx \\  \\ bx =  ln(10)  -  ln(4)  \\  \\ bx =  ln(10 \div 4)  \\ becoz \:  \:  ln(m)  -  ln(n)  =  ln(m \div n)  \\  \\ bx =  ln(2.5)  \\  \\ x  ( - 1 \div 10) =  ln(2.5)  \\  \\ x =  - 10 ln(2.5)  \\  \\ so \: the \: exact \: coordinates \: are \:  \: ( - 10 ln(2.5)  \:  \: 10)

Similar questions